WALTERS STATE COMMUNITY COLLEGE
MASTER PLAN UPDATE

December 2008

THE TENNESSEE BOARD OF REGENTS
SBC No. 166/023-02-2006
WALTERS STATE COMMUNITY COLLEGE
MASTER PLAN UPDATE

Prepared by McCARTY HOLSAPLE McCARTY INC.
Architects - Interior Designers - Planners
Knoxville, Tennessee
www.mhminc.com
PREFACE

Acknowledgements 01
Executive Summary 02

HISTORY OF THE COLLEGE

1.0 History 02
1.1 Overview of the Institution 04
1.2 Mission Statement 04

MORRISTOWN CAMPUS - MASTER PLAN

2.0 Campus Overview 07
2.1 Campus Goals 11
2.2 Existing Campus Conditions 11
2.2.1 Buildings and Grounds 11
2.2.2 Infrastructure 14
2.3 Future Campus Requirements 18
2.3.1 Proposed Academic Programs by Division 18
2.3.2 Space Needs 18
2.3.3 Parking & Circulation Requirements 27
2.3.4 Athletic and Recreation Facility Projections 27
2.3.5 Proposed Land Acquisition / Disposition 28
2.4 Physical Master Plan 28
2.4.1 Main Campus 28
2.4.2 Public Safety Property 35
2.4.3 Great Smoky Mountain Expo Center 35

SEVIERVILLE CAMPUS - MASTER PLAN

3.0 Campus Overview 39
3.1 Campus Goals 39
3.2 Existing Campus Conditions 41
3.2.1 Buildings and Grounds 41
3.2.2 Infrastructure 45
3.3 Future Campus Requirements 45
3.3.1 Proposed Academic Programs by Division 45
3.3.2 Space Needs 46
3.3.3 Parking Projections 51
3.3.4 Athletic and Recreation Facility Projections 52
3.4 Physical Master Plan 52
3.4.1 Land and Building Uses 52
3.4.2 Vehicular Circulation and Parking 52
3.4.3 Open Space and Pedestrian Circulation 52
SEVIERVILLE CAMPUS - MASTER PLAN CONTINUED

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.4</td>
<td>Athletic and Recreation Facilities</td>
<td>53</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Campus Infrastructure</td>
<td>53</td>
</tr>
<tr>
<td>3.4.6</td>
<td>Physical Master Plan</td>
<td>53</td>
</tr>
</tbody>
</table>

GREENEVILLE CAMPUS - MASTER PLAN

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>Campus Overview</td>
<td>60</td>
</tr>
<tr>
<td>4.1</td>
<td>Campus Goals</td>
<td>60</td>
</tr>
<tr>
<td>4.2</td>
<td>Existing Campus Conditions</td>
<td>62</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Buildings and Grounds</td>
<td>62</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Infrastructure</td>
<td>62</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Community Setting</td>
<td>63</td>
</tr>
<tr>
<td>4.3</td>
<td>Future Campus Requirements</td>
<td>63</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Proposed Academic Programs by Division</td>
<td>63</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Space Needs</td>
<td>63</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Parking Requirements</td>
<td>67</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Proposed Land Acquisition / Disposition</td>
<td>69</td>
</tr>
<tr>
<td>4.4</td>
<td>Physical Master Plan</td>
<td>72</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Proposed Buildings & Additions</td>
<td>72</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Campus Edge Improvements</td>
<td>74</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Space Reallocation</td>
<td>75</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Existing Facility Improvements</td>
<td>77</td>
</tr>
<tr>
<td>4.5</td>
<td>Implementation</td>
<td>77</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Parking</td>
<td>77</td>
</tr>
</tbody>
</table>

TAZEWELL CAMPUS - MASTER PLAN

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0</td>
<td>Campus Overview</td>
<td>81</td>
</tr>
<tr>
<td>5.1</td>
<td>Campus Goals</td>
<td>81</td>
</tr>
<tr>
<td>5.2</td>
<td>Existing Campus Conditions</td>
<td>81</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Buildings and Grounds</td>
<td>81</td>
</tr>
<tr>
<td>5.3</td>
<td>Future Campus Requirements</td>
<td>82</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Proposed Academic Programs</td>
<td>82</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Space Needs</td>
<td>82</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Parking Projections</td>
<td>85</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Proposed Land Acquisition / Disposition</td>
<td>86</td>
</tr>
</tbody>
</table>

APPENDIX

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>I.C. Thomasson - 2007 Walters State Mechanical, Electrical, Plumbing Report</td>
<td>89</td>
</tr>
<tr>
<td>B</td>
<td>Claiborne County High School - Floor Plans</td>
<td>104</td>
</tr>
<tr>
<td>C</td>
<td>Campus Safety and Protection Assessment</td>
<td>107</td>
</tr>
<tr>
<td>D</td>
<td>Building Cost Summary</td>
<td>111</td>
</tr>
<tr>
<td>E</td>
<td>Morristown Campus - Main Entrance Proposed Design</td>
<td>112</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Morristown Campus
Existing Map -
 Main Campus (Section 2.0)
 Public Safety Property (Section 2.0)
 GSM Expo. Center Property (Section 2.0)
Topography -
 Main Campus (Section 2.2.1)
 Public Safety Property (Section 2.2.1)
Drainage -
 Main Campus (Section 2.2.1)
 Public Safety Property (Section 2.2.1)
Vegetation -
 Public Safety Property (Section 2.2.1)
Space Reallocation
 College Center (Section 2.4)
 Business and Tech. Center (Section 2.4)
Proposed Master Plan -
 Short Term - Main Campus (Section 2.4)
 Long Term - Main Campus (Section 2.4)
 Public Safety Property (Section 2.4)
 GSM Expo. Center (Section 2.4)

Sevierville Campus
Existing Campus Map (Section 3.0)
Drainage (Section 3.2.1)
Land & Building Uses (Section 3.2.1)
Proposed Parking (Section 3.4.2)
Proposed Infrastructure Loop (Section 3.4.5)
Proposed Land & Building Uses (Section 3.4.5)
Proposed Master Plan -
 Short Term - Master Plan (Section 3.4.6)
 Mid-Term - Master Plan (Section 3.4.6)
 Long Term - Master Plan (Section 3.4.6)

Greeneville Campus
Existing Campus Map (Section 4.0)
Proposed Parking (Section 4.3.3)
Proposed Land Acquisition (Section 4.3.5)
Proposed Master Plan -
 Short Term - Master Plan (Section 4.4.6)
 Mid-Term - Master Plan (Section 4.4.6)
 Long Term - Master Plan (Section 4.4.6)

Tazewell Campus - Claiborne County
New Facility Rendering (Section 5.3.5)
ACKNOWLEDGEMENTS

Walters State Community College - Master Planning Taskforce Chairs
Dr. Wade B. McCamey (President), Mr. Brian Hagenburger (Director of Facilities)

Walters State Community College - Master Planning Taskforce
Mr. John Baldy, Dr. Marilyn Bowers, Ms. Ann Bowen, Dr. Lori Campbell, Mr. Mike Campbell, Ms. Nicole Cardwell-Hampton, Dr. Foster Chason, Mr. Joe Combs, Dr. Jim Crawford, Dr. Doug Cross, Ms. Janice Donahue, Mr. Henry Drinnon, Ms. Deanna Essington, Ms. Sue Frazier, Dr. Evelyn Honaker, Dr. Rosemary Jackson, Ms. Lacey Kington, Mr. Chris Knight, Dr. John LaPrise, Mr. Jerry Loar, Dr. Don Lindsey, Ms. Dru Miller, Ms. Linda Roberts, Mr. Steve Roberts, Ms. Sarah Rose, Mr. Marty Rucker, Mr. Joey Sargent, Dr. Debra Scott, Mr. Tom Sewell, Mr. Jared Thacker, Mr. Paul Todaro, Mr. Max Williams

Tennessee Board of Regents
Mr. Carl Manka

McCarty Holsaple McCarty, Inc.
Mr. David Bakewell, Mr. John Gaddis, Mr. Jeff Johnson, Mr. Doug McCarty

Fred Martin Consulting, Inc.
Mr. Fred Martin

John Fisher & Associates, Inc.
Mr. John Fisher

I.C. Thomasson Associates, Inc.
Mr. Richard Braswell, Mr. Ernie Hudgins

Performance Design Technology
Mr. Stephen Presnell
EXECUTIVE SUMMARY

The Walters State Master Plan is organized around Walters State’s four campuses: Morristown including the Public Service Center & Great Smoky Mountain Exposition Center, Sevierville, Greeneville and Tazewell.

Morristown is Walters State’s main campus. This campus has two major factors that will affect it in the coming years. One factor is the projected student growth. The campus is projected to experience modest student growth. A majority of this growth is expected to occur within the high school dual enrollment, university parallel, and healthcare-based programs.

The second factor is the future redesign and construction of the 25E interchange in front of campus. This TDOT project is projected to eliminate one campus entrance and redesign of the two others.

To allow for this student growth, vehicle redirection and Morristown’s current needs the following were addressed in the plan: rebalancing of existing parking, locating of future building sites, promotion and encouragement of campus/student life, development of tournament level athletic facilities and the redesign of campus entrances.

The Sevierville campus is expected to experience the largest percentage amount of growth among the Walters State campuses. This growth is projected to occur within the Culinary Arts, Tourism-Based and Healthcare-related programs. To help accommodate this growth, two new buildings have been completed in December 2007. These buildings will allow Sevierville to redistribute its departmental square footage needs within its existing and new buildings. In addition, new building sites including a multipurpose facility have been identified on the plan as well as phased parking to encourage future growth on the campus.

The Greeneville campus is projected to have the second highest level of student growth among the Walters State campuses. A majority of this growth is expected to occur within the High School Dual Enrollment and Healthcare programs. Three of Greeneville’s largest issues to address in the future are mechanical infrastructure of its current facility, the lack of available parking and the need for student services space. “Rediscover Greeneville,” a community-wide master plan is gaining momentum. Walters State has several opportunities within this plan to expand and become a true urban campus in the future. Among these are the acquisition of Laughlin Square and the creation of a new Walters State/Greene County library built on campus.

The Tazewell/Claiborne County facility is projected to have modest student growth in the future. These gains are likely to occur in the general education and expansion of the healthcare-related programs. In the near future, the college is losing its lease on its current facility. One possible long-term solution for space is the acquisition and remodeling of the former Claiborne County High School.
1.0 HISTORY

In 1957, the Pierce-Albright Report on Higher Education in Tennessee was made to the Tennessee Legislative Council. This report reflected the need for additional higher education opportunities to be provided for the average Tennessean. Upper East Tennessee was one of many places where higher education was not readily available to the citizens.

In 1963, the Tennessee General Assembly appropriated $200,000 for use over a two-year period to implement the Pierce Albright Report. The State Board of Education, under the direction of Commissioner J. Howard Warf, developed plans for the establishment of a group of community colleges to serve these areas without access to higher education. The goal was to have one of these colleges within a 30-40 mile commuting distance of every Tennessean. Admission to these colleges was not to be restrictive to recent high school graduates, but was to be an “open door” opportunity with colleges serving a whole community from ages 18 to 80. Acting upon the recommendations of Governor Frank G. Clement and the State Department of Education, the 1965 Tennessee General Assembly authorized the establishment of the first three of these colleges, one to be located in each of the State’s three Grand Divisions. Columbia, in 1966, became the first operational community college in Tennessee, Cleveland and Jackson opened in 1967. Dyersburg and Tullahoma provided sites for the next two opened in 1969. Walters State Community College, located in Morristown, was the sixth such college. Its opening date was September, 1970.

In 1969, the General Assembly authorized three more community colleges: Roane State in Harriman, Volunteer State in Gallatin, and Shelby State in Memphis. The nine community colleges and the regional universities were under jurisdiction of the State Board of Education. Chapter 838 of the Public Acts of 1972 authorized establishment of the State University and Community College System of Tennessee, today known as the Tennessee Board of Regents System. The elements of the System include the state universities and state community colleges which had been under the State Board of Education, the Board of Regents, and the Chancellor. The new system of governance became effective on July 1, 1972. Chattanooga State Technical Community College, the tenth community college, was added to the system in 1973. Since that time, the state’s technical institutes have been upgraded to community college status and the addition of 26 area technology centers has made the Tennessee Board of Regents System the sixth largest system of higher education in the nation. The Tennessee Board of Regents and the Board of Trustees of The University of Tennessee System are coordinated by the Tennessee Higher Education Commission.

This sixth community college, Walters State Community College, was named for former U.S. Senator Herbert S. Walters who played a key role in the establishment of the community college in Morristown. In 1970 the campus of Walters State was under construction and temporary quarters were used during the first year of operation. The College Center Building was completed in the fall of 1971. The next major addition to the campus was the Career Technology Building which was completed in the winter quarter of 1975. The Life Sciences Building, completed in December 1979, was essential to provide needed classroom and faculty offices for a rapidly growing student body. In the summer of 1979 the construction of the Humanities Complex began. The project was completed in the fall of 1980. In December of 1979, the college added the plant operations building to the physical facilities inventory to handle the functions of maintenance and repair. In 1994 the college began construction of its Campus Development Phase II master plan which
included a new library, math/science building, public safety center, and administration building. The new library opened in May of 1997. The college's agribusiness Expo Center, completed in 1996, is in the twelfth year of operation.

Walters State received accreditation by the Southern Association of Colleges in 1972 and, after completion of an effective institutional Self-Study program, received reaffirmation of accreditation in 1976. Extensive institutional Self-Studies were completed during 1985-87 and 1995-97. Subsequent to the successful Self Studies, Walters State received reaffirmation of accreditation in December 1987, in December 1997 and in December 2007.

1.1 OVERVIEW OF THE INSTITUTION

I. Key Factual Information:

A. Academic Size - (Fall 2006)
 a. Full Time Equivalent (FTE):
 - Morristown: 2,340 Students
 - Sevierville: 690 Students
 - Greeneville: 475 Students
 - Tazewell: 132 Students
 b. Total Headcount:
 - Morristown: 3,534 Students
 - Sevierville: 1,123 Students
 - Greeneville: 885 Students
 - Tazewell: 270 Students
 - Total: 3,637 Students
 - Total: 5,812 Students

B. Total Area & Buildings - (Summer 2007)
 a. Area of Campus(es)
 - Morristown: 175.0 Acres
 - Sevierville: 67.4 Acres
 - Greeneville: 2.9 Acres
 - Tazewell: 0.0 Acres
 b. Number of Buildings
 - Morristown: 23
 - Sevierville: 3
 - Greeneville: 1
 - Tazewell: 1 (Leased)
 Total Holdings: 242.6 Acres
 Total Holdings: 28 Buildings
1.2 MISSION STATEMENT

Walters State Community College, a public two-year higher education institution, is a component of the State University and Community College System of Tennessee governed by the Tennessee Board of Regents. The mission of Walters State is consistent with the college’s shared vision for guiding the college into the twenty-first century and with the values expressed within the Campus Compact. Walters State is a learning centered, comprehensive community college established to provide affordable and quality higher education opportunities for the residents of upper East Tennessee. The college offers programs of study that lead to the Associate of Science, Associate of Science Teaching, Associate of Arts, and Associate of Applied Science degrees.

The college has degree programs built on a general education foundation that emphasize learning outcomes and provide information technology instruction across the curriculum. Students may receive a certificate of credit for programs of study of one year or less; students may also receive a certificate of recognition for non-credit programs and services.

Walters State provides: university parallel programs in Social Sciences, Behavioral Science, Education, Math, Pre-Engineering, Pre-Professional, Natural Sciences, Humanities and Fine Arts that prepare students to transfer to senior institutions; programs and courses in business, technical education, health, public safety, that prepare students for immediate employment in support of workforce development; continuing education and community service programs in support of professional growth, personal enrichment, and lifelong learning; cultural enrichment programs and activities that promote the arts and heritage of East Tennessee and celebrate global diversity; public service programs in support of economic, workforce, and community development; advanced, honors, and developmental education programs for academic enrichment; programs, services, and activities designed to enhance student opportunities, achievement, personal development, sense of civic responsibility, leadership skills, and general welfare; research and development activities for continuous improvement of institutional effectiveness; and access that utilizes traditional and non-traditional delivery systems including the institution’s virtual college.

To facilitate student learning and transfer, the college maintains articulation, collaboration, and partnerships with public schools, technology centers, colleges, and universities. Service to business and industry is facilitated through the utilization of partnerships, networks, and customized programs and courses supporting the development of competitive products, services, and operations. The college provides faculty and staff of the highest quality dedicated to excellence in teaching, student learning, and service.

As a comprehensive community college, Walters State provides leadership to a geographically large and diverse service area. The primary service area includes the counties of Claiborne, Cocke, Grainger, Greene, Hamblen, Hancock, Hawkins, Jefferson, Sevier, and Union. The college has a TBR approved expanded service area including other East Tennessee counties for Public Safety and Health programs. The college’s strategic planning and continuous improvement system is designed to promote maximum accessibility and accountability and to enhance overall institutional effectiveness. The college assesses and responds to changing community needs and provides opportunities for enhancing the quality of life throughout the service area. Walters State remains committed to the education of a non-racially identifiable student body and promotes diversity and access without regard to race, gender, religion, national origin, age, disability, or veteran status.
2.0 CAMPUS OVERVIEW

Main Campus
Walters State’s Morristown main campus opened in 1970. Today, campus facilities include the R. Jack Fishman Library, the Public Safety Center, the Clifford “Bo” Henry Center for Business and Technology, the McGuffin-Jolley Natural Science Building, the Doggett Mathematics and Behavioral/Social Sciences Building, the Dr. Jack E. Campbell College Center Building and the Judge William H. Inman Humanities Complex. It is the primary flagship campus for Walters State Community College.

Public Safety Property
The Public Safety property is located across Highway 25E from the main campus. The site has the Public Safety Building, several athletic fields and a tactical driving range for vehicles. The Public Safety Building houses several state and federal law enforcement agencies, as well as educational programs in the field of law enforcement and emergency medical services.

Great Smoky Mountains Expo Center
The Walters State Community College Great Smoky Mountains Expo Center is a multi-purpose arena created to showcase East Tennessee livestock; enhance agricultural education programs for Walters State Community College students, 4-H, Future Farmers of America, and other young people and other citizens in general; and provide a site to facilitate non-agricultural events including musical programs, pet shows, business/industrial trade shows, regional high school & college graduation, and various community service events.
Existing Facilities
1. Expo Center
2. Horse Barns
3. Maintenance Building
4. Horse Ring
5. Parking

EXISTING EXPOSITION CENTER
WALTERS STATE COMMUNITY COLLEGE
CAMPUS MASTER PLAN
07/14/08

NOT TO SCALE
2.1 CAMPUS GOALS
In April 2007, extensive on campus interviews were conducted with students, staff, faculty andWSCC administration. The following campus goals were developed as a result of these interviews.

- Develop Comprehensive Solution to Traffic and Infrastructure Issues from the interchange redesign
- Rebalance Campus Parking
- Identify Potential Building Sites
- Promote and Encourage Campus / Student Life
- Develop Tournament Level Athletic Facilities
- Define and Provide for the Current and Future Facility Needs

2.2 EXISTING CAMPUS CONDITIONS
2.2.1 Buildings and Grounds

Topography
Main Campus
The campus rests on a gently sloping hill. The high point is located to the south behind the current baseball field. The campus ranges in elevation from 1,430 feet to 1,320 feet above sea level. The majority of the campus buildings and functions are situated between 1,385 feet and 1,395 feet. The lowest point is located in the northeast corner of campus at a drainage basin located next to the lower level parking entrance.

Public Safety Property
The Public Safety property has an 180 feet elevation change across its site. The land is primarily rolling with its highest point (1,580 feet) at the east end of the property and the lowest point (1,400 feet) adjacent to Highway 25.

Great Smoky Mountains Expo Center
The GSM Expo Center property is visible from Interstate 81. Most of the site is relatively flat. The property ranges from 1,159 feet to 1,212 feet in elevation. Retention areas are located on the south and northeast sides of the site. The property gently slopes to its access road on the north side of the property.

Landforms & Landmarks
Landforms are natural physical features of the earth’s surface. Landmarks are recognizable monuments, buildings or other structures of notable significance. Both landforms and landmarks in a campus setting are sometimes used for casual navigation and orientation. During interviews, no landmarks or landforms were identified that would be considered significant to the campus or its traditions. There was a general desire in interviews to develop landforms and landmarks that would promote a sense of place and tradition on the campus.

Drainage
Walters State’s main campus has no reported drainage problems. All campus runoff drains to and is discharged from the northeast corner of campus.
Vegetation

Main Campus
Certified in 2006, Walters State’s Morristown campus is registered by the Tennessee Urban Forestry Council as a Level 1 Arboretum. “The nature trail was initially developed as a hands-on project for students in botany and landscaping classes. It continues to serve this purpose but is open to the general public as well.” The campus has over 30 different species of trees labeled.

Public Safety Property
Over half of the public safety property is comprised of mixed hardwood forest. Many of the most common native trees in Tennessee are located on the property including soft maple, dogwood and white oak. No highly evasive plants such as kudzu were observed during field visits.

GSM Expo Center
The GSM Expo Center Property has two primary elevations. The upper elevation is higher than the property’s access road and houses all building development. The lower elevation is below the access road and serves as the water collection area for the property. It contains a mixture of tall grasses and low height shrubs. This low laying area does not have permanent standing water but does have some water during the spring.

Edges and Entry Points
Edges are natural and manmade features which help to define the campus and its boundaries. The most significant edge is TN State Highway 25-E which defines the eastern edge of the main campus. While Walters State owns property and buildings on the other side of highway 25-E there is a general perception by the public that the campus rests on one side of Highway 25-E. There are currently three entrance points from Highway 25 to the campus.

The southern edge of campus is defined by the crest of a hill located near the ball field. This hill is most noticeable when approaching the campus by vehicle along Highway 25E; one crests the hill and is introduced to the Walters State main campus on the left. While Walters State does not own property at the top of the hill, the hill defines the campus edge.

The west edge is defined by a residential neighborhood. The campus has an entry point into the neighborhood. This entrance is gated and accessible only for emergencies. The north edge has no physical features that clearly define an edge.

2.2.2 Infrastructure
Sanitary, Natural Gas, Electrical Distribution, Storm Water
Most of the infrastructure was installed during the 1970’s and 1980’s. No problems were reported during interviews with physical plant staff. An overall assessment of the campus infrastructure is available in an I.C. Thomasson report located in the appendix.
Communications
The campus has a looped fiber optic network. The network consists of a primary and secondary backup cable. The cables are buried in the same trench around campus which is not ideal. Fiber optic cable also needs to be extended to the Public Safety site.

Campus Security
The Walters State Campus Safety and Protection Master Plan is included in this plan as Appendix C. All future safety and protection improvements are outlined in the document.

2.3 FUTURE CAMPUS REQUIREMENTS
2.3.1 Proposed Academic Programs by Division
Faculty and staff from each academic division have contributed in the development of an academic programs list. This list is to be used as a general guide for future programs, it in no way implies all programs would be developed in the future.

Division of Business
Culinary Arts – prepares graduates for a successful career in food preparation, cooking, baking, kitchen or restaurant management, and non-commercial food service. A wide variety of careers are available in the food service industry. This program has been approved by college curriculum and academic affairs.

Division of Humanities
Digital Media / Broadcasting Program – provides training in the production of content and recordings for live broadcasting and online networking. This program will require approval by TBR or THEC. It would be located on the third floor of the CCEN bldg.

Division of Natural Science
Forensic Science Technicians - trains graduates to assist in crime investigation by collecting and analyzing physical evidence. This program will require approval by TBR or THEC. It would be located in the Public Safety Bldg and utilize the existing forensics lab.

Division of Technical Education / GSM Expo Center
Alternative Fuels – provides research and development of non conventional fuels, such as ethanol.

Viticulture - promotes the science, production and study of grapes for wine making. This program has been approved by college curriculum and academic affairs.

Veterinary Technician - educates graduates in the care and handling of animals, the basic principles of normal and abnormal life processes, and in routine laboratory and clinical procedures.

2.3.2 Space Needs
To determine the future space needs for Walters State, two space planning models were utilized: the Tennessee Higher Education Commission (THEC) space standards developed in the 1970’s and a model developed in the 1980’s for the University System of Georgia.
The THEC model does not adequately address the current higher education environment, particularly in the areas of Classroom, Class Lab, and perhaps Library utilization at two-year colleges. The impact of computer and audio/video technology has also not been incorporated into the dated THEC space standards.

The Georgia model draws on several related and more recent space guidelines, including those of the Council of Educational Facility Planners International (CEFPI), the Pennsylvania State System of Higher Education, the Association of College and Research Libraries (ACRL), and others.

Walters State has unusually high percentages of their full time equivalent (FTE) generated during the evening and weekend hours, as shown below:

<table>
<thead>
<tr>
<th>Location</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morristown</td>
<td>24%</td>
</tr>
<tr>
<td>Sevier County</td>
<td>36%</td>
</tr>
<tr>
<td>Greeneville</td>
<td>42%</td>
</tr>
<tr>
<td>Claiborne County</td>
<td>69%</td>
</tr>
</tbody>
</table>

Due to this situation, the planner decided to calculate space needs based on a 24 hour day rather than on the conventional daytime (8:00am-5:00pm) hours as the timeframe for Weekly Student Contact Hour (WSCH) calculations.

A weakness of both models regards the lack of consideration for non-credit course space utilization, a particularly important part of the two-year college mission. Finally, the reliance of both models on student contact hours or FTE as the basis for class lab needs does not account for an increasing demand for open computer labs to serve students taking Web-based classes on campus, perhaps due to inadequate home internet access in rural areas.

Both models classify space according to the Higher Education General Information Standards (HEGIS). The THEC model has eight categories of space: Classrooms, Class Labs, Instructional Offices, Administrative Offices, Library, Physical Education, Student Services, and Physical Plant.

The Georgia model also includes eight space categories: Classrooms, Laboratory, Faculty Offices, Staff Offices, Library and Study, Athletic and Special Use, General Use, and Support. Due to the different ways of categorizing space in the two models, it is difficult to make intelligent comparisons beyond the first five categories.

Because of the inherent weaknesses of all space standards, these models should be considered only as guidelines to indicate areas and priorities of space needs. Both the planners and the College agree, however, that the selective use made of both the THEC, Georgia, and CEFPI space models is useful and appropriate for this Master Plan.

FTE Enrollment Projections

The college has made projections for future phases of FTE student enrollment growth. These projections are not tied to particular years, although time periods of 5-10-15 years may be applicable. This approach allows for flexibility in campus/center growth, independent of time.
Space Needs Analyses

Using the FTE projections and the THEC and Georgia models, space requirements for each campus/center have been calculated, within the eight HEGIS space classifications. These space needs have been compared to existing and planned net area square footage (NASF) for each space type, showing either projected surpluses or shortages of space and percentages of available space. Shortages are shown in parentheses and highlighted for emphasis on the following tables. The recommended model numbers are also bolded for emphasis.

Morristown Campus: Classroom NASF

<table>
<thead>
<tr>
<th>Space Type / Model</th>
<th>Existing</th>
<th>2006</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
</tr>
<tr>
<td>Classrooms: THEC</td>
<td>35,003</td>
<td>22,377</td>
<td>12,626</td>
<td>25,341</td>
<td>9,662</td>
</tr>
<tr>
<td>Classrooms: Georgia</td>
<td>35,003</td>
<td>31,386</td>
<td>3,617</td>
<td>35,544</td>
<td>(541)</td>
</tr>
</tbody>
</table>

Both models use formulae to project Weekly Student Contact Hours (WSCH) from credit student FTE, where actual WSCH are not available. The WSCH are then multiplied by an average Room Utilization Rate, an average Station Occupancy Rate and an average station size to calculate the Classroom space needed.

As noted earlier, the Georgia model generates a greater need for Classroom space than does the THEC model. Three factors have increased the need for average station sizes:

1. Higher levels of laptop computer use, which require more desk or table space
2. A reduction in the use of student desks versus tables
3. Alternative teaching approaches, such as group study or case study, which require greater room use flexibility

The THEC model uses 15 NASF per station, while the Georgia model uses a range from 21-30 NASF per station, with 26 NASF used as the general standard. Because using the 26 NASF figure would generate such a large need for Classroom space, the planner opted to use the CEFPI standard of 20 NASF per station as a compromise guideline.

Georgia model Classroom deficits for Phase I, Phase II and Phase III should be used as a guideline in planning for development of Classroom space at this campus.
Morristown Campus: Class Lab NASF

<table>
<thead>
<tr>
<th>Space Type / Model</th>
<th>Existing</th>
<th>2006</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
</tr>
<tr>
<td>Class Labs: THEC</td>
<td>42,689</td>
<td>32,907</td>
<td>9,782</td>
<td>37,266</td>
<td>5,423</td>
</tr>
</tbody>
</table>

Class Labs: Georgia

| Class Labs: Georgia | 42,689 | 40,949 | 1,740 | 46,374 | (3,685) | 48,999 | (6,310) | 52,429 | (9,740) |

As with Classroom space, both models use formulae to generate Weekly Student Contact Hours (WSCH) from credit student FTE, since actual WSCH are not available. This has been noted as a weakness in both models. The WSCH are then multiplied by an average Room Utilization Rate, an average Station Occupancy Rate and an average station size to calculate the Class Lab space need.

The THEC model uses 60 NASF per student lab station, while the Georgia model uses a range of 40-100 NASF per station, depending on the lab type and academic discipline. An average lab station size of 70 NASF was used in the Georgia model calculations. As a result, the Georgia model generates a greater need for Class Lab space than does the THEC model.

A finding of surplus Class Lab space has often resulted when the THEC model has been applied at other colleges. Several factors may affect this typical finding:

1. Where actual Class Lab WSCH cannot be ascertained, the usage of standard formulae tends to produce less reliable predictors of lab space need.
2. Community colleges, such as Walters State, tend to need more specialized technical labs rather than more generic multi-use labs.
3. The use of on-campus FTE to generate WSCH doesn’t take into consideration the growing need for open computer lab space to support Web-based classes.

The planners should use the Georgia model as a guide for Class Lab space, taking into consideration particular academic discipline needs expressed in campus interviews in developing the plan.

Morristown Campus: Instructional Office NASF

<table>
<thead>
<tr>
<th>Space Type / Model</th>
<th>Existing</th>
<th>2006</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
</tr>
<tr>
<td>Instructural Offices: THEC</td>
<td>27,199</td>
<td>21,840</td>
<td>5,359</td>
<td>24,733</td>
<td>2,466</td>
</tr>
</tbody>
</table>

Average

| Average | 20,022 | 7,178 | 22,674 | 4,525 | 23,994 | 3,205 | 25,625 | 1,547 |

Faculty Offices: Georgia

| Faculty Offices: Georgia | 27,199 | 18,203 | 8,996 | 20,615 | 6,584 | 21,855 | 5,344 | 23,250 | 3,949 |
The THEC model uses credit student FTE to generate Instructional Office space needs, while the Georgia model uses the number of projected FTE faculty as the basis. The Georgia model does specifically provide for service and meeting space in addition to actual office space.

In spite of the differences in approach, however, the models generate similar needs for Instructional Office space, with little need shown by either model. The plan should use the average of the THEC and Georgia model calculations as a guideline for all phases of campus development.

Morristown Campus: Administrative Staff Office NASF

<table>
<thead>
<tr>
<th>Space Type / Model</th>
<th>Existing</th>
<th>2006</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
</tr>
<tr>
<td>Administrative Offices: THEC</td>
<td>27,276</td>
<td>15,232</td>
<td>12,044</td>
<td>17,250</td>
<td>10,026</td>
</tr>
<tr>
<td>Average</td>
<td>26,260</td>
<td>1,016</td>
<td>29,705 (2,429)</td>
<td>31,010 (3,734)</td>
<td>32,363 (5,087)</td>
</tr>
<tr>
<td>Staff Offices: Georgia</td>
<td>27,276</td>
<td>37,228 (9,952)</td>
<td>42,160 (14,884)</td>
<td>44,027 (16,744)</td>
<td>45,725 (18,449)</td>
</tr>
</tbody>
</table>

The THEC model uses credit student FTE to generate Administrative Office space needs, while the Georgia model uses the number of projected FTE administrative staff as the basis for projections. As with Faculty Offices, the Georgia model provides for service and meeting space in addition to the actual office space.

There are marked differences in the results of the two models for this campus, with the Georgia model generating considerably more need. Perhaps this is a result of the requirement to make projections of FTE staff needed for future phases of enrollment growth. Any over-projection of staff would result in a corresponding over-projection of space required.

Due to this apparent discrepancy, the planner recommends using the average of the THEC and Georgia models as a parameter to plan for Administrative/Staff office space in future phases.

Morristown Campus: Library NASF

<table>
<thead>
<tr>
<th>Space Type / Model</th>
<th>Existing</th>
<th>2006</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
</tr>
<tr>
<td>Library: THEC</td>
<td>29,331</td>
<td>26,125</td>
<td>3,206</td>
<td>29,586 (255)</td>
<td>31,275 (1,944)</td>
</tr>
<tr>
<td>Library: Georgia</td>
<td>29,331</td>
<td>24,996</td>
<td>4,335</td>
<td>28,308</td>
<td>1,023</td>
</tr>
</tbody>
</table>

The THEC model uses the projected book volume plus the student FTE to generate Library stack, reading, and service space needs. The Georgia model is similar, using the projected book volume plus the total of student and faculty FTE to generate Library space needs.
In spite of the differences in methodology, the results are quite similar, with the Georgia model generating slightly less space need. The plan should attend to the noted Georgia model Library space deficits in developing alternatives for future phases of campus growth.

Morristown Campus: Physical Education / Special Use NASF

<table>
<thead>
<tr>
<th>Space Type / Model</th>
<th>Existing</th>
<th>2006</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
</tr>
<tr>
<td>Physical Ed.: THEC</td>
<td>29,287</td>
<td>23,400</td>
<td>5,887</td>
<td>26,500</td>
<td>2,787</td>
</tr>
<tr>
<td>Special Use: Georgia</td>
<td>33,673</td>
<td>53,586</td>
<td>(19,913)</td>
<td>60,685</td>
<td>(27,012)</td>
</tr>
</tbody>
</table>

The THEC model uses student FTE as the basis for projecting Physical Education space need. The Georgia model's Special Use category includes athletics, recreation, physical education, as well as media production, clinic, and demonstration space in its calculations.

The Georgia model uses a much higher multiplier than does the THEC model for athletics, recreation, and physical education space, particularly for campuses below 5,000 FTE students. Media production space needs were included for the Morristown campus but not for any branch campus/centers. No space needs were included for clinic or demonstration space at any location.

Because of the different space types and multipliers used in the two models, it would be difficult to make any meaningful comparisons. The planner recommends using the THEC model to guide Physical Education space planning.

Morristown Campus: Student Services / General Use NASF

<table>
<thead>
<tr>
<th>Space Type / Model</th>
<th>Existing</th>
<th>2006</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
</tr>
<tr>
<td>Student Services: THEC</td>
<td>18,446</td>
<td>21,645</td>
<td>(3,199)</td>
<td>24,513</td>
<td>(6,067)</td>
</tr>
<tr>
<td>General Use: Georgia</td>
<td>28,533</td>
<td>47,626</td>
<td>(19,093)</td>
<td>53,935</td>
<td>(25,402)</td>
</tr>
</tbody>
</table>

The THEC model treats Student Services as a singular entity for space planning purposes, using both day time and night time student FTE as the basis for calculations. The Georgia model includes assembly, exhibition, dining/food services, merchandising, general use lounges, student union, recreation, and conference facilities in a broader General Use category.

In the Georgia model, assembly space needs were calculated for the Morristown campus but not for the branch
Because of the different space types and multipliers used in the two models, it would be difficult to make meaningful comparisons. The planner recommends using the THEC model to plan for Student Services space needs, addressing growing deficits in all three phases.

Morristown Campus: Physical Plant / Support NASF

<table>
<thead>
<tr>
<th>Space Type / Model</th>
<th>Existing</th>
<th>2006</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Project-</td>
<td>Surplus</td>
<td>Project-</td>
<td>Surplus</td>
<td>Project-</td>
</tr>
<tr>
<td></td>
<td>ed Need</td>
<td>/ Shortage</td>
<td>ed Need</td>
<td>/ Shortage</td>
<td>ed Need</td>
</tr>
<tr>
<td>Physical Plant: THEC</td>
<td>18,544</td>
<td>8,503</td>
<td>10,041</td>
<td>9,630</td>
<td>8,914</td>
</tr>
<tr>
<td>Support: Georgia</td>
<td>18,544</td>
<td>20,361</td>
<td>(1,817)</td>
<td>23,058</td>
<td>(4,514)</td>
</tr>
</tbody>
</table>

The THEC model treats Physical Plant space as a singular entity, calculated as 5.2% of total formula space need. The Georgia model includes centralized areas for computer-based data processing, telecommunications, shop services, general storage/supply, vehicle storage, printing/duplicating, mail, and shipping/receiving in a broader Support category. The Georgia guideline for Support space need is 8.0% of total formula space need.

Again, because of the different space types and multipliers used in the two models, it would be difficult to make meaningful comparisons. The planner recommends using the THEC model to guide Physical Plant space needs, although there are no deficits noted.

Space Needs Summary

<table>
<thead>
<tr>
<th>Space Type / Model</th>
<th>Model</th>
<th>Existing</th>
<th>2006</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Project-</td>
<td>Surplus</td>
<td>Project-</td>
<td>Surplus</td>
<td>Project-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ed Need</td>
<td>/ Shortage</td>
<td>ed Need</td>
<td>/ Shortage</td>
<td>ed Need</td>
</tr>
<tr>
<td>Classroom</td>
<td>GA.</td>
<td>35,003</td>
<td>31,386</td>
<td>3,617</td>
<td>35,544</td>
<td>(541)</td>
</tr>
<tr>
<td>Class Labs</td>
<td>GA.</td>
<td>42,689</td>
<td>40,949</td>
<td>1,740</td>
<td>46,374</td>
<td>(3,685)</td>
</tr>
<tr>
<td>Instr. Off.</td>
<td>Avg.</td>
<td>27,199</td>
<td>20,022</td>
<td>7,177</td>
<td>22,674</td>
<td>4,525</td>
</tr>
<tr>
<td>Admin.</td>
<td>Avg.</td>
<td>27,276</td>
<td>26,260</td>
<td>1,016</td>
<td>29,705</td>
<td>(2,429)</td>
</tr>
<tr>
<td>Library</td>
<td>GA.</td>
<td>29,331</td>
<td>24,996</td>
<td>4,335</td>
<td>28,308</td>
<td>1,023</td>
</tr>
<tr>
<td>Physical Ed.</td>
<td>TN.</td>
<td>29,287</td>
<td>23,400</td>
<td>5,887</td>
<td>26,500</td>
<td>2,787</td>
</tr>
<tr>
<td>Student Ser.</td>
<td>TN.</td>
<td>18,446</td>
<td>21,645</td>
<td>(3,199)</td>
<td>24,513</td>
<td>(6,067)</td>
</tr>
<tr>
<td>Plant Sup.</td>
<td>TN.</td>
<td>18,544</td>
<td>8,503</td>
<td>10,041</td>
<td>9,630</td>
<td>8,914</td>
</tr>
<tr>
<td>Totals</td>
<td></td>
<td>227,775</td>
<td>197,161</td>
<td>30,614</td>
<td>223,248</td>
<td>5,618</td>
</tr>
</tbody>
</table>

There are large projected sq. ft. deficits during Phase I in Physical Education and smaller deficits in Student Service, Class Lab, Administrative, and Classroom.

Proposed Academic Space Needs by Academic Division

In addition to the square footage needs identified in the Space Needs Analysis summarized above the following space and equipment needs were identified through interviews with faculty, students, staff and administration. These are considered current needs for each academic division.
Division of Behavioral & Social Sciences
Additional Classrooms

Division of Business - Center for Business & Technology
Smart Classrooms, 20-Person Conference Room, Adjunct Staff Offices, Web Base Production Area

Division of Health Programs - Nursing & Allied Health
Classrooms, Computer Labs, Skills Lab, Nursing Stations, Patient Rooms, Student Lounge, Student Resource Center, Storage, Administrative Office Pod, Faculty Office Pod, Testing Rooms

Division of Humanities
Music Department - Improved Lighting,
Theatre Department – Storage Space & Scene Shop
Art Department - Computer Lab
Museum Space – Native American Arts Exhibit

Division of Natural Science
Dr. J.W. Ford Observatory (Relocation)

Division of Public Safety
Driving Test Track - Expansion

Academic Support Facility Requirements
Through a series of interviews with staff and administration the following space and equipment requirements were identified as current needs for each support facility.

Campbell College Center Building
Gen Ed Smart Classrooms, Concession to Gym, Culinary Art Training Facility, Upgrade Electrical Capacity, Larger Business Office

Office of College Advancement
Larger Suite, Additional Offices

Great Smoky Mountains Expo Center
Perimeter Fence, Pave Existing Parking, Camping Hookups, Lab / Classroom Space, Additional Parking

Welcome Center / Public Safety
Record Storage Space, Emergency Generator

New Student Services
Internet Café, Admission’s Office, Financial Aid Center, Student Lounge, Study Rooms, Bursar’s Office, Testing Center, Student Organization Offices, Game Room, 200 Person Multi-Purpose Room, Food Court (1-2 Fast Food Franchises)
Maintenance Building
Office Space, Paint Shop, Automotive Repair Space

Campus Security
Campus-wide Public Address System, Increased Security Cameras Use

2.3.3 Parking & Circulation Requirements
The main campus has an estimated 1,541 parking spaces. 1,541 spaces / 2,716 people (2006 FTE) = 0.57 parking spaces per person. An accepted standard for estimating future parking needs is 0.80 parking spaces per person. The following 0.72 parking spaces per person is used in the parking calculations for this master plan. This factor was developed by WSCC physical plant staff and master planners based on current capacity and current parking space utilization. Below are projected parking needs on campus in the future.

<table>
<thead>
<tr>
<th>Year</th>
<th>Total People</th>
<th>Total Projected Parking*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>2,716</td>
<td>1,541 Spaces*</td>
</tr>
<tr>
<td>2011</td>
<td>3,055</td>
<td>2,200 Spaces*</td>
</tr>
<tr>
<td>2016</td>
<td>3,225</td>
<td>2,322 Spaces*</td>
</tr>
<tr>
<td>2021</td>
<td>3,445</td>
<td>2,481 Spaces*</td>
</tr>
</tbody>
</table>

*Projection Assumptions: Current driving habits will continue into the future and 0.72 parking spaces per person average.

The following are additional parking and circulation requirements for the master plan:
- Need for more balanced parking around campus
- Redesign entry circulation due to proposed TDOT interchange
- Improve S-turn curve near maintenance bldg.
- Better utilize back access roads
- Improve visitor direction to campus and main facilities

2.3.4 Athletic and Recreation Facility Projections
Walters State's Senators Athletic program has a new desire to upgrade its existing facilities and construct several new athletic buildings. These upgrades and facilities would allow Walters State to host tournaments, grow attendance and recruit top area athletes. To foster this growth, an athletic zone is proposed on the south side of campus. By concentrating athletic uses, programs can better share facilities. This zone would allow Walters State to take advantage of the underutilized parking located on that side of campus.

Short Term Needs (5-10 Years)

Soccer Facility - Walters State would like to develop a collegiate level soccer program. The current soccer fields located on the Public Safety property would be upgraded to include lighting and bleacher seating. A new support building would be constructed to provide restrooms, concessions, locker rooms, and storage for field maintenance equipment.

Baseball Stadium – One of the key buildings within the proposed athletic zone is a new Senators Baseball Stadium. The stadium would allow the Senators to host regional and national tournaments.
The current stadium does not meet the minimum requirements to host such tournaments. The facility lacks proper lighting, hosting facilities, and a regulation size field. The current field is 20 feet too short in the outfield to meet the minimum recommended size by the NCAA.

The new stadium would have a regulation size field, lighting for night games, expanded seating and permanent concessions to improve the fan experience. The estimated cost would be $1,858,750 in 2008 dollars.

Softball Facility – The current softball facility is unable to host TJCCAA tournaments. The current facility needs to be upgraded or a new facility needs to be constructed to include field lighting, hospitality area & public address system.

Walking Trails - To take advantage of the natural beauty and close proximity to campus, a walking trail system would be developed on the Public Safety Property. This trail system would provide both recreational and educational opportunities. The trail system would be tied to recreation classes on campus and allow Walters State additional land to expand its arboretum classification.

Long Term Needs (15-30 Years)

Gymnasium / Recreation Facility – To promote student recreation on campus a new 50,000 sq. ft. multipurpose building is proposed. This facility would provide a venue for fitness training, intramural sports and fitness education. A large multipurpose space would allow for basketball, volleyball and other intramural sports to be played. The facility would be open to all students and faculty.

The estimated cost for this complex would be $10,000,000 dollars. (50,000 sq. ft. X $200 per. sq. ft. = $10,000,000 - 2008 dollars)

2.3.5 Proposed Land Acquisition / Disposition

Acquisition

The Great Smoky Mountains Expo Center currently uses private land located directly across the street and to the west from its main entrance as overflow parking for large events. The Expo Center would like to purchase this parcel to better handle its parking needs on site. The exact acreage is unknown but assumed to be between 5-10 acres. No appraisal has been conducted on the property to determine its current market value.

Disposition

The Morristown campus has no plan to dispose of any of its land. If the proposed Highway 25-E interchange is constructed as currently designed, portions of the campus’s land fronting both sides of the highway will need to acquired by TDOT to complete the interchange. The exact amount of acreage necessary for the interchange is unknown. A “taking” process will be initiated by TDOT.
2.4 PHYSICAL MASTER PLAN - 2.4.1 Main Campus

Campus Parking
In the development of the physical master plan one of the main requests by users was for more evenly distributed parking on campus. A majority of parking developed in previous years had occurred on the north side of campus causing a larger imbalance in parking distribution and long walks for people who use the south end of campus. For this reason, a large 600 car parking lot is proposed on the south side of campus on the current baseball field site. This lot will help to more evenly distribute parking on campus.

Athletics Zone
One goal of the athletic department is to host regional and national tournaments on campus in some sports. Many of the current facilities do not meet the general requirements for hosting such tournaments. To address this problem a new athletic zone is proposed in the master plan for all new athletic developments. This zone would be located on the north side of campus and would increase the utilization of the two large existing parking lots adjacent to it. Located within this zone would be new baseball and softball complexes and a large multi-purpose athletic complex for student and faculty use.

Campus Entrances and Exits
The Tennessee Department of Transportation is proposing a new interchange in front of the main campus. The interchange design closes the north campus entrance by the baseball fields and relocates Walters State’s main entrance increasing traffic on the other entrances. The proposed redesign for the main campus entrance and signage is illustrated in Appendix E.

All south bound traffic on highway 25E accessing campus will enter from the current main entrance location. All north bound traffic will access campus from the entrance adjacent to the existing softball fields and shopping mall. This entrance will be redesigned by TDOT to handle increased traffic and become the campus’s new main entrance. In addition, the perimeter road connecting to this entrance is proposed to be widened (estimated cost $676,000 in 2008). All relocated entrances will need to include improved signage, landscaping and redesigned campus markers.

During interchange construction campus access to 25E will be continuous be limited at times. Access plans will be developed by TDOT prior to construction to handle accessibility issues. If needed as a temporary solution, additional entrances currently closed on the back of campus could be opened during operating hours. If these access points are opened campus security would be adjusted to increase monitoring of these locations.

TDOT projects construction to begin on or after June 2010 with an expect 3 year completion time. The highway redesign primarily benefits the surrounding businesses and neighborhoods.

Buildings Sites & Space Reallocation
Four building sites have been identified as possible locations for future academic buildings. Two sites were identified in the previous master plan.

Student Service Building Site
Funding for a new Student Services Building has been approved by TBR. The construction of the building will begin in 2009. The building will house student services functions for the campus and include food court, student dining room, lyceum for international education for hosting a wide variety of student educational events.
By moving student service functions into this new building, space becomes available in the existing Campbell College Center. Walters State plans to move the Business department out of the Technology Building and into part of this space. By relocating this department, space will be available in the Technology Building for the immediate needs of the growing healthcare programs. This reallocation of space is illustrated in table and graphically on the following pages.

<table>
<thead>
<tr>
<th>Program Served</th>
<th>Student Services</th>
<th>Study / Testing</th>
<th>Offices</th>
<th>Storage / Misc.</th>
<th>Shell Space</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admissions, Etc.</td>
<td>3,388</td>
<td>0</td>
<td>780</td>
<td>920</td>
<td>0</td>
<td>5,088</td>
</tr>
<tr>
<td>Counseling & Testing</td>
<td>620</td>
<td>1,550</td>
<td>940</td>
<td>430</td>
<td>0</td>
<td>3,540</td>
</tr>
<tr>
<td>Financial Aid / Bursar</td>
<td>2,340</td>
<td>0</td>
<td>890</td>
<td>1,180</td>
<td>0</td>
<td>4,410</td>
</tr>
<tr>
<td>Student Services</td>
<td>720</td>
<td>0</td>
<td>840</td>
<td>240</td>
<td>0</td>
<td>1,800</td>
</tr>
<tr>
<td>Tutoring</td>
<td>1,900</td>
<td>200</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>2,300</td>
</tr>
<tr>
<td>All Other Programs</td>
<td>6,800</td>
<td>0</td>
<td>0</td>
<td>680</td>
<td>1,000</td>
<td>8,480</td>
</tr>
<tr>
<td>Net Total Assigned</td>
<td>15,768</td>
<td>1,750</td>
<td>3,550</td>
<td>3,550</td>
<td>1,000</td>
<td>25,618</td>
</tr>
</tbody>
</table>

Natural Science Building Addition
Another potential building site would be for a multi-story 30,000 gross sq. ft. addition to the existing Natural Science Building. This addition would allow for Walters State to expand its current healthcare programs. The estimated cost for this addition would be $6,000,000 dollars. (30,000 sq. ft. X $200 per sq. ft. = $6,000,000 - 2008 dollars)

Additional Building Sites
Two additional building sites with a use to be determined in the future are proposed on the south side of campus. Potential uses could include on-campus residential facilities although the nature and approach to residential life on a community college campus will require much study.

Campus Security
The college would like to increase its use of security cameras to monitor entrances and building access points. These cameras would provide limited coverage and be located at major entrance points as identified by the campus police department. In addition, a voice over IP compatible emergency warning system is desired as the primary campus-wide notification system for emergencies. As it becomes more cost effective the campus
Services Will Move to New Student Service Bldg.
Services Likely to Move into New Student Service Bldg.
Services have potential to move into New Service Bldg.

KEY

COLLEGE CENTER
FIRST FLOOR

COLLEGE CENTER
SECOND FLOOR
would to phase out the lock and keys type system for campus buildings and adopt an access card based system for increased security control and convince. As student and faculty numbers increase campus police staffing should increase.

Perimeter Road
Due to safety concerns, the perimeter road behind the Business and Technology building is proposed to be redesigned. Interviews indicate the road as currently configured does not allow crossing pedestrian’s sufficient warning of approaching vehicles.

2.4.2 Public Safety Property
JW Ford Observatory
The current JW Ford Observatory is located on the main campus. The facility is not easily accessible to handicap persons and is subject to surrounding light pollution. A new observatory building is proposed next to the existing Public Safety building. The existing telescope and associated equipment would be relocated to this site.

Walking Trails
To promote health, a walking trail system is proposed on the Public Safety site. A majority of the site is woodlands and ideal for the development of a trail system. The trails would be designed to follow the lands topography.

Soccer Facility
Walters State is in the process of developing a formal soccer program. The existing soccer fields will be upgraded to tournament requirements and a new clubhouse would be built in the future.

2.4.3 Great Smoky Mountain Expo Center
Expo Parking
To accommodate current parking needs the property across the street from the GSM Expo Center is recommended to be acquired in the future.

Electrical and Water Hookups
The Expo Center would like to develop an RV camping area with electrical and water hookups to better serve it users. This area would be located in an area east of the Arena.

Viticulture
Walters State would like to develop a viticulture program on the Expo Center Property. The hillside to the east of the Expo Center is an ideal orientation for growing grapes. This program would be developed to support a small but growing wine industry in Tennessee.

Academic Addition
To support new programs in Viticulture, Veterinary Technician and Alternative Fuels, a modest 600 sq. ft. classroom addition to the main Expo Center facility would be required. The estimated cost for this addition would be $120,000 dollars. (600 sq. ft. X $200 per sq. ft. = $120,000 - 2008 dollars)
3.0 CAMPUS OVERVIEW

The Sevier County Campus is located at 1720 Old Newport Highway in Sevierville approximately one-half mile from Highway 411. The campus contains three buildings totaling over 85,000 square feet. They were constructed through the generous support of the governmental bodies and private contributions of citizens in Sevier County. The campus contains twenty-three general education classrooms, computer technology laboratories, science laboratories, an interactive television (ITV) classroom, a culinary arts laboratory / production kitchen, music and performing arts practice rooms/classrooms, an electronic library, student lounge areas, and administrative offices. A variety of general education and select technology courses are available to over 1100 students.

3.1 CAMPUS GOALS

In April 2007, interviews were conducted with staff, faculty and administration on the Sevierville campus. A series of campus goals were developed and are listed below:

- Reutilization of Existing Academic Facilities
- General Improvements
- Multi-Purpose Facility
- Promote and Encourage Campus / Student Life
- Define and Provide for the Current and Future Facility Needs
3.2 EXISTING CAMPUS CONDITIONS

3.2.1 Buildings and Grounds

Topography
The Sevier County campus is located 1720 Old Newport Highway. The campus is a 67.4 acres site at the intersection of Pittman Center Road and Old Newport Highway. The land is relatively flat reflecting is past use as agriculture farm land.

Edges & Entry Points
Its perimeter is defined by a small river on two sides, residential property, Pittman Center Road South and Old Newport Highway on the other three sides. The campus maintains a primary entrance on the southwest end of the site to Pittman Center Road and a secondary entrance on the southeast end of the site with Old Newport Highway.

Land Forms & Landmarks
The land is trapezoidal in shape with no natural landmarks or views. The most prominent features on the site are man-made. They include the three campus buildings and a fountain in the front of campus.

Drainage
The campus is within a watershed that drains towards a river adjacent to the site. The site is served by a detention pond / fountain adjacent to Pittman Center Road.

Vegetation
There is a 10 feet - 20 feet natural vegetation buffer between the adjacent river and the campus. The overall site consists primarily of turf and natural field grasses. All trees on campus were planted after 1997 and have not reached maturity. They are planted around the main campus building and used as landscaping.

Building Use and Condition

Main Campus Building
The main campus building is a brick 40,000 square feet two story facility than contains eight general academic classrooms, two computer labs, science laboratories, student success center / counseling, a culinary arts laboratory with dining area, tutoring center, conference room, an Interactive Television (ITV) classroom, and electronic library, music/performance arts practice rooms and administrative and faculty offices. A variety of general education and select technology courses are offered each semester. The building was constructed in the late 1990's. Staff reported no problems with the building’s structural and mechanical systems.
EXISTING LAND USE
SEVIERVILLE CAMPUS
WALTERS STATE COMMUNITY COLLEGE
CAMPUS MASTER PLAN

08/28/07

LEGEND
- Athletics
- Open Space
- Parking
- Academic
- Maintenance

0' 150' 300' 600'
Cates-Cutshaw Hall

The Cates-Cutshaw Hall is a 25,300 square foot building that houses 13 classrooms, 2 computer labs and administrative offices. The building was completed in January 2008.

Conner-Short Center

The Conner-Short Center is a 23,700 square foot building that is home to the Rel Maples Institute for Culinary Arts and Professional Entertainment program. This program is one of two in Tennessee accredited by the American Culinary Federation Foundation. It has an enrollment of about 125 students and is expected to grow to over 200 students with the opening of the new building. The building contains a dining hall, 2,100-square-foot kitchen containing 8 competition stations, dance studio, band room, private music rooms, classrooms and offices. The building was completed in January 2008.

Open Space and Pedestrian Circulation

The campus site is currently 25-30% developed. The site currently has an abundance of open space. The land in front of the main campus building and fronting Old Newport Highway and Pittman Center is intended
to remain as open space. There are developed walking trails that connect the main campus building with the campus fountain. Benches are situated along the path for resting.

Vehicular Circulation and Parking
All vehicular traffic on campus occurs along Jim Hickman Drive. The road begins and ends at the campus entrances. The Jim Hickman Drive bisects the campus site. The southern half currently houses all development. Located in the northern half are the soccer fields and three small maintenance sheds.

The campus currently has an estimated 500 parking spaces divided evenly into four parking lots accessible from Jim Hickman Drive. Staff reporting indicates this parking is at or near capacity for current daily needs and over capacity during registration week and some weekends during the soccer season.

Recreation and Sports Facilities
The campus has no formal intercollegiate sport facilities. Located in the open space on the north end of campus are three intramural soccer fields, primarily used by community organized soccer leagues. The campus only offers walking and bowling as educational classes.

3.2.2 Infrastructure
Staff reporting indicates no problems with the campus infrastructure. All campus infrastructure was installed in the late 1990’s and is currently within its intended design life.

Campus Security:
The campus has on-site security during hours of operation. In addition, all buildings have security systems which are remotely controlled and monitored from the Morristown campus.

3.3 FUTURE CAMPUS REQUIREMENTS

3.3.1 Proposed Academic Programs
Faculty and staff from each academic division have contributed in the development of an academic programs list. This list is to be used as a general guide for future programs; it in no way implies all programs would be developed in the future.

Dietitian Certification – Trains graduates to promote health through proper eating.

Nutrition Certification – Trains graduates to advise people on dietary matters relating to health, well-being and optimal nutrition.

Accounting – Trains graduates to provide auditing, tax, litigation support services to the public. This program has been approved by college curriculum and academic affairs.

Paralegal – Trains graduates to assist lawyers in specifically delegated substantive legal work. This program has been approved by college curriculum and academic affairs.

Digital Media / Graphic Designers – trains graduates to assist companies in the development of print, web and video media. This program will need to be approved by TBR or THEC.
Sound and Light Technologies – trains graduates in the setting up and controlling of sound and lighting equipment for entertainment venues

Respiratory Care Technology – trains graduates to work closely with physicians and other members of the health care team to provide the patient with effective treatment of respiratory and cardiac disorders and includes the use of life support equipment as well as emergency and trauma intervention. This program has been approved by college curriculum and academic affairs.

Physical Therapy Assistant – trains graduates to help physical therapists in their daily activities which include assisting patients during rehabilitation. This program has been approved by college curriculum and academic affairs.

Medical / Surgical Technicians – trains graduates to assist surgeons and anesthesiologists before, during, and after surgeries. This program will need to be approved by TBR or THEC.

3.3.2 Space Needs

Full Time Equivalents (FTE) Projections
The college has made projections for future phases of FTE student enrollment growth. These projections are not tied to particular years, although time periods of 5-10-15 years may be applicable. This approach allows for flexibility in campus/center growth, independent of time.

<table>
<thead>
<tr>
<th>Year / Phase</th>
<th>Students FTE</th>
<th>Faculty</th>
<th>Staff</th>
<th>Total People</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>690 Students</td>
<td>34 Faculty</td>
<td>11 Staff</td>
<td>735 People</td>
</tr>
<tr>
<td>Phase I</td>
<td>925 Students</td>
<td>45 Faculty</td>
<td>15 Staff</td>
<td>985 People</td>
</tr>
<tr>
<td>Phase II</td>
<td>1,225 Students</td>
<td>60 Faculty</td>
<td>21 Staff</td>
<td>1,306 People</td>
</tr>
<tr>
<td>Phase III</td>
<td>1,600 Students</td>
<td>79 Faculty</td>
<td>27 Staff</td>
<td>1,706 People</td>
</tr>
</tbody>
</table>

Space Needs Analyses
Using the FTE projections and the THEC and Georgia models, space requirements for each campus/center have been calculated, within the eight HEGIS space classifications. These space needs have been compared to existing and planned NASF for each space type, showing either projected surpluses or shortages of space and percentages of available space. Shortages are shown in parentheses and highlighted for emphasis on the following tables. The recommended model numbers are also bolded for emphasis.

Space Requirements by Campus/Center and Space Type
For all branch campuses/centers, the projected space needs have been adjusted to reflect the TBR Branch Campus/Center model, where less than 100% of projected space needs are justified for all but Classrooms and Class Labs. Each Space Type is described in more detail in the following section:
Sevier County Campus: Classroom NASF

<table>
<thead>
<tr>
<th>Space Type / Model</th>
<th>Existing</th>
<th>2006</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
</tr>
<tr>
<td>Classroom: THEC</td>
<td>18,019</td>
<td>6,598</td>
<td>11,421</td>
<td>8,845</td>
<td>9,174</td>
</tr>
<tr>
<td>Classroom: Georgia</td>
<td>18,019</td>
<td>9,255</td>
<td>8,764</td>
<td>12,407</td>
<td>5,612</td>
</tr>
</tbody>
</table>

As expected, the Georgia model shows more need for Classroom space than does the THEC model. Nevertheless, there is no deficit shown until Phase III, when the Georgia model should be used to address a deficit.

Sevier County Campus: Class Lab NASF

<table>
<thead>
<tr>
<th>Space Type / Model</th>
<th>Existing</th>
<th>2006</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
</tr>
<tr>
<td>Class Labs: THEC</td>
<td>21,850</td>
<td>9,703</td>
<td>12,147</td>
<td>13,008</td>
<td>8,842</td>
</tr>
<tr>
<td>Class Labs: Georgia</td>
<td>21,850</td>
<td>12,075</td>
<td>9,775</td>
<td>16,187</td>
<td>5,663</td>
</tr>
</tbody>
</table>

As expected, the Georgia model shows a need for more Class Lab space than does the THEC model and should be used to address any projected deficits. There are particular identified needs for open computer labs to support Web and Developmental Studies courses. These Georgia model needs should be addressed in Phase III planning.

Sevier County Campus: Instructional Office NASF

<table>
<thead>
<tr>
<th>Space Type / Model</th>
<th>Existing</th>
<th>2006</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
</tr>
<tr>
<td>Instructional Offices: THEC</td>
<td>3,929</td>
<td>4,830</td>
<td>(901)</td>
<td>6,475</td>
<td>(2,546)</td>
</tr>
<tr>
<td>Average</td>
<td>4,366</td>
<td>(437)</td>
<td>5,853</td>
<td>(1,924)</td>
<td>7,775</td>
</tr>
<tr>
<td>Faculty Offices: Georgia</td>
<td>3,929</td>
<td>3,902</td>
<td>27</td>
<td>5,231</td>
<td>(1,302)</td>
</tr>
</tbody>
</table>

The THEC model shows a greater need for Faculty Office space than does the Georgia model at this campus, with both models showing deficits. The planner recommends using an average of the two calculations to guide planning for future Faculty Office space.
Sevier County Campus: Administrative Staff Office NASF

<table>
<thead>
<tr>
<th>Space Type / Model</th>
<th>Existing 2006</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
</tr>
<tr>
<td>Administrative Offices: THEC</td>
<td>2,964</td>
<td>1,449</td>
<td>1,515</td>
<td>1,943</td>
</tr>
<tr>
<td>Average</td>
<td>1,710</td>
<td>1,254</td>
<td>1,321</td>
<td>1,643</td>
</tr>
<tr>
<td>Staff Offices: Georgia</td>
<td>2,964</td>
<td>521</td>
<td>2,443</td>
<td>698</td>
</tr>
</tbody>
</table>

Despite the differences in the two models’ methodology, both models show little need for additional Administrative/staff office space. The average of the two model calculations should guide all future phases of campus development.

Sevier County Campus: Library NASF

<table>
<thead>
<tr>
<th>Space Type / Model</th>
<th>Existing 2006</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
</tr>
<tr>
<td>Library: THEC</td>
<td>932</td>
<td>4,718</td>
<td>(3,786)</td>
<td>6,325</td>
</tr>
<tr>
<td>Average</td>
<td>4,521</td>
<td>3,589</td>
<td>6,061</td>
<td>5,129</td>
</tr>
<tr>
<td>Library: Georgia</td>
<td>932</td>
<td>4,324</td>
<td>(3,392)</td>
<td>5,797</td>
</tr>
</tbody>
</table>

Despite slight differences in methodology, the two models show very similar needs for Library space at this campus, with deficits shown by both models. The average of the two models’ deficits should be addressed in all phases of future campus development.

Sevier County Campus: Physical Education / Special Use NASF

<table>
<thead>
<tr>
<th>Space Type / Model</th>
<th>Existing 2006</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
</tr>
<tr>
<td>Physical Ed: THEC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

| Special Use: Georgia | 483 | 0 | 483 | 0 | 483 | 0 | 483 |

Because the TBR Branch Campus/Center formula was used for this campus, there is no need shown by either model for physical education, recreation, media production, clinic, or demonstration space.
Sevier County Campus: Student Services / General Use NASF

<table>
<thead>
<tr>
<th>Space Type / Model</th>
<th>Existing</th>
<th>2006</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
</tr>
<tr>
<td>Student Service:</td>
<td>2,826</td>
<td>3,191</td>
<td>(365)</td>
<td>4,278</td>
<td>(1,452)</td>
</tr>
<tr>
<td>THEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Use:</td>
<td>4,162</td>
<td>3,674</td>
<td>(488)</td>
<td>4,925</td>
<td>(763)</td>
</tr>
<tr>
<td>Georgia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Because no projections were made for assembly, exhibition, student union, or conferencing space at branch campuses/centers, there are similar needs shown for Student Services/General Use space at this center. The plan should address the THEC model projected deficits in Student Services space during Phase I, Phase II, and Phase II development.

Sevier County Campus: Physical Plant / Support NASF

<table>
<thead>
<tr>
<th>Space Type / Model</th>
<th>Existing</th>
<th>2006</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
</tr>
<tr>
<td>Physical Plant:</td>
<td>1,823</td>
<td>793</td>
<td>1,030</td>
<td>1,063</td>
<td>760</td>
</tr>
<tr>
<td>THEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support:</td>
<td>1,823</td>
<td>1,368</td>
<td>455</td>
<td>1,834</td>
<td>(11)</td>
</tr>
<tr>
<td>Georgia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Again, because of the different space types and multipliers used in the two models, it would be difficult to make meaningful comparisons. The planner recommends using the THEC model to plan Physical Plant space needs, although there are no deficits noted until at least Phase III.

Space Needs Summary

<table>
<thead>
<tr>
<th>Space Type / Model</th>
<th>Model</th>
<th>Existing</th>
<th>2006</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
</tr>
<tr>
<td>Classroom</td>
<td>GA</td>
<td>18,019</td>
<td>9,255</td>
<td>8,764</td>
<td>12,407</td>
<td>5,612</td>
</tr>
<tr>
<td>Class Labs</td>
<td>GA</td>
<td>21,850</td>
<td>12,075</td>
<td>9,775</td>
<td>16,187</td>
<td>5,663</td>
</tr>
<tr>
<td>Instr. Office</td>
<td>GA</td>
<td>3,929</td>
<td>3,902</td>
<td>27</td>
<td>5,231</td>
<td>(1,302)</td>
</tr>
<tr>
<td>Admin. Avg</td>
<td></td>
<td>2,964</td>
<td>1,710</td>
<td>1,254</td>
<td>1,321</td>
<td>1,643</td>
</tr>
<tr>
<td>Library</td>
<td>GA</td>
<td>932</td>
<td>4,324</td>
<td>(3,392)</td>
<td>5,797</td>
<td>(4,865)</td>
</tr>
<tr>
<td>Physical Ed.</td>
<td>GA</td>
<td>483</td>
<td>0</td>
<td>483</td>
<td>0</td>
<td>483</td>
</tr>
<tr>
<td>Student Ser.</td>
<td>TN</td>
<td>2,826</td>
<td>3,191</td>
<td>(365)</td>
<td>4,278</td>
<td>(1,452)</td>
</tr>
<tr>
<td>Plant Support</td>
<td>TN</td>
<td>1,823</td>
<td>793</td>
<td>1,030</td>
<td>1,063</td>
<td>760</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>52,826</td>
<td>35,250</td>
<td>17,576</td>
<td>46,284</td>
<td>6,542</td>
</tr>
</tbody>
</table>
There are large projected sq. ft. deficits during Phase I in Library and smaller deficits in Instructional Office and Student Service.

Proposed Academic Space Needs by Academic Division

In addition to the square footage needs identified in the Space Needs Analysis summarized above the following space and equipment needs were identified through interviews with faculty, students, staff and administration. These are considered current needs for each academic division.

- Division of Business
 - Hospitality
 - Dinner Theatre
 - Culinary Arts
 - Laundry Facility
 - Broadcast Facility
 - Competition Kitchen

- Division of Humanities
 - English Dept. Computer / Writing Lab

- Division of Natural Science
 - Micro / Cell Biology Lab 30-People

- General Division Needs
 - Adjunct Faculty Meeting Spaces
 - Faculty Offices
 - Group and Single Study Rooms
 - Smart Classrooms
 - Tutoring Classroom
 - Outdoor Classroom

Academic Support Facility Requirements

- Centralized Student Services
 - Bookstore
 - Bursar Office
 - Pay Window
 - Student Counseling Space
 - Student Lounge
 - Student Organization Offices
 - Student Service Center

- IT Storage
- Learning Resource Center
- Library (2,400 square feet)
- Maintenance Facility
3.3.3 Parking Projections
The campus has 500 parking spaces. Staff reporting indicates that the parking is currently at 100% capacity. 500 spaces / 735 people (2006 FTE) = 0.68 parking spaces per person. There is also a reported need for handicap parking located closer to existing facilities. An additional 97 parking spaces have been added with the completion of the General Education and Culinary Arts buildings. This should provide campus with the needed capacity.

<table>
<thead>
<tr>
<th>Year</th>
<th>Total People</th>
<th>Total Projected Parking*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>735 People</td>
<td>530 Spaces*</td>
</tr>
<tr>
<td>2011</td>
<td>985 People</td>
<td>710 Spaces*</td>
</tr>
<tr>
<td>2016</td>
<td>1,306 People</td>
<td>941 Spaces*</td>
</tr>
<tr>
<td>2021</td>
<td>1,706 People</td>
<td>1,229 Spaces*</td>
</tr>
</tbody>
</table>

*Projection Assumptions: Current driving habits will continue into the future and 0.72 parking space per person average.

3.3.4 Athletic and Recreation Facility Projections
Multi-Purpose Facility
- Dinner Theatre
- Gymnasium
- 300-500 Person

3.4 PHYSICAL MASTER PLAN
3.4.1 Land and Building Uses
The campus is divided in half by its access road. The area to the North of the road is allocated for athletic and parking uses. The athletic land closest to the access road is anticipated to become academic use in a time frame of beyond the time window of this master plan. The area to the South of the road is allocated for academic, parking and open space uses.

3.4.2 Vehicular Circulation and Parking
Vehicular Circulation
No additional campus roads are projected to be constructed during the time frame of this master plan. A need for a traffic light at one of the entrances may become necessary in the next 20 years as student traffic exiting campus and general road traffic is assumed to increase.

Parking
Parking will have one of the biggest physical impacts on the campus in the future. It is projected that the student population will more than double in the next 20 years. The need for parking will more than double during that same period.

A phased approach to parking has been developed that references the same phasing of student population in this study. When a student population of 985 is reached (Phase I) it is anticipated that the campus will need 710 parking spaces.
3.4.3. Open Space and Pedestrian Circulation

Open Space
The campus land fronting Old Newport Highway is designated as Open Space. This is to protect strong sight lines from the road to the main campus building and to provide students with areas for general recreation. A series of walking paths have been developed circling the main fountain. This path system could be further enhanced with additional landscaping and native plantings.

A vegetation buffer of 30 feet separating the river and the campus is recommended to minimize any sentiment runoff into the river.

Pedestrian Circulation
A majority of pedestrian circulation occurs between adjacent buildings and buildings to vehicle parking. These circulation paths need to be designed around the pedestrian scale. All paths need to have pedestrian lighting and constructed with porous materials when available to control water runoff.

3.4.4. Athletic and Recreation Facilities

The Sevierville campus currently has three soccer fields. As new parking is constructed the Soccer fields will need to be relocated to the back of the campus.

A multipurpose gymnasium / dinner theatre facility is proposed to be located next to the Culinary Arts Building. This facility could contain a fitness center and a large multipurpose space capable of seating 300-500 people for dinner theatre, playing basketball and hosting large events such as student orientation.

3.4.5 Campus Infrastructure

Current infrastructure is adequate for the proposed future construction outlined in this plan. It is anticipated that an infrastructure loop would be created over time to ensure redundancy is built into the system. Building locations outlined in this plan would represent half of the proposed loop. Over time as athletic land north of the access road is converted to academic use the remainder of the loop would be completed.

Campus Security

The Walters State Campus Safety and Protection Master Plan is included in this plan as Appendix C. All future safety and protection improvements are outlined in the document.

3.4.6 Comprehensive Plan

Walters State has three primary areas: parking, building sites and athletics that will affect the master plan in the future.
BUILDINGS
1. Main Campus Bldg.
2. Cates-Cutshaw Hall
3. Conner-Short Center

PARKING MASTER PLAN
SEVIERVILLE CAMPUS
WALTERS STATE COMMUNITY COLLEGE
CAMPUS MASTER PLAN

10/12/07
Parking
It is projected the Sevierville will need an additional 600 parking spaces in the future. This need would double the campus’s current capacity and have one of the largest impacts on the appearance of campus. To prevent the campus from visually becoming a sea of parking, new buildings and additional trees are proposed within existing parking areas to reduce the sight line distances within each lot. By mixing parking and buildings together the amount of parking will not be as visually pronounced.

Building Sites
The master plan identifies seven potential building sites. The program for these buildings is not determined. The plan only attempts to identify potential sites to encourage thoughtful building placement as future space needs occur. All short term growth would occur within the center of campus and long term growth would occur on the outer perimeter of the parking.

Mult-Purpose Building
One building type that has been identified as a mid-term goal is a new 13,500 sq. ft. multipurpose building. This building would allow Walters State to have dinner theatre productions, larger student orientation classes and general recreation on campus. It is suggested this building be placed adjacent to the Culinary Arts building. The estimated cost for this building would be $3.7 million dollars. (13,500 sq. ft. X $275 per sq. ft. = $3,712,500 in 2008 dollars)

Maintenance Building
As the Sevierville campus expands the need will grow for an onsite maintenance/service building. The construction of this building is viewed as a mid-term campus goal. It is proposed the building would be 10,500 sq. ft. The estimated cost of the building would be $1,050,000 dollars. (10,500 sq. ft. X $100 per sq. ft. = $1,050,000 in 2008 dollars)

Recreation / Intramurals
Walters State currently has three soccer fields that are primarily used by the community and intramural soccer leagues. In the master plan these fields would be relocated towards the river to allow for future parking and building. The multipurpose building mentioned previously will allow for more indoor sports and general fitness training.
LEGEND
- Buildings
- Parking
- Proposed Building
- Proposed Parking
- Pedestrian Access Point

BUILDINGS
1. Main Campus Bldg.
2. General Education Bldg.
3. Rel Maples Culinary Arts Bldg.
4. Proposed Multi-Purpose Bldg.

MID-TERM MASTER PLAN
SEVIERVILLE CAMPUS
WALTERS STATE COMMUNITY COLLEGE
CAMPUS MASTER PLAN

10/12/07
LONG TERM MASTER PLAN
SEVIERVILLE CAMPUS

WALTERS STATE COMMUNITY COLLEGE
CAMPUS MASTER PLAN

10/12/07

LEGEND
- Buildings
- Parking
- Proposed Building
- Proposed Parking
- Pedestrian Access Point

BUILDINGS
1. Main Campus Bldg.
2. General Education Bldg.
3. Rel Maples Culinary Arts Bldg.
4. Proposed Multi-Purpose Bldg.
4.0 CAMPUS OVERVIEW

The campus is located at 215 North College Street in downtown Greeneville. Course offerings include most courses in the General Education core and additional technical education courses for most degree and certificate programs. A typical student would be required to complete some classes on the main campus before graduation. The facility was made available through the generous efforts of the governments of Greene County and the City of Greeneville, along with the Walters State Foundation.

The facility includes general education classrooms, administrative offices, computer, chemistry and biology laboratories, a nursing training center, student lounge areas, and media center. In addition, the center is home for the Regional Police Academy and Respiratory Care program. East Tennessee State University offers classes in the Walters State facility.

4.1 CAMPUS GOALS

In April 2007, a series of interviews were conducted with students, police cadets, staff, faculty and Greeneville administration. The following campus goals were developed from these interviews.

- Expand Program Choices
- Increase Parking
- Improve Exterior Appearance of Existing Building
- Upgrade Building Infrastructure
- Develop Urban Campus
- Improve Utilization of Existing Building
4.2 EXISTING CAMPUS CONDITIONS

4.2.1 Building and Grounds

Building
Walters State’s Greeneville facility is located at 215 North College Street in downtown historic Greeneville. The facility is the former Laughlin Memorial Hospital. The hospital was founded in a large house on the site in 1938. As the hospital grew additions were completed in the 1940’s, 1950’s, 1967, 1976 and 1986. Today the facility is 148,000 sq. ft. The facade of the original house still fronts Main Street. The hospital building was purchased by the Walters State Foundation in 1995. The State of Tennessee purchased the facility in 2006.

Grounds
The Greeneville facility is located on a 3-acre site that consists of the building and approximately 140 paved parking spaces.

4.2.2 Infrastructure
In 2001, Walters State commissioned I. C. Thomasson Associates, Inc. to conduct a Mechanical Systems Survey of the Greeneville Facility for a proposed addition. I.C. Thomasson reports that minimal mechanical upgrades have been performed since the 2001 survey. Below is the Executive Summary from the report:

A field investigation of the existing mechanical systems was performed in July 2001. Most of the mechanical equipment was found to be abandoned, inoperative, in poor repair or not suitable for reuse because it is hospital grade equipment that is not suited for the anticipated reuse of the facility. Most of the system controls are disconnected and inoperative. It is anticipated the vast majority of the existing mechanical equipment is this facility will be removed and scrapped during the course of the renovation work.

The present steam heating system has adequate capacity to heat the facility, but immediate corrective measures are necessary to stabilize the system and improve its reliability. Replacement of the steam heating system with a hot water heating system has also been considered, but the costs involved are significant and it is anticipated asbestos abatement would also be required.

The present chilled water system is adequate to meet the cooling needs of the facility, but corrective measures are recommended to improve the operation and efficiency of the system. The 140 ton package chiller installed in 1997 should be integrated into a new cooling plant. The air handler and package chiller installed in 1986 should also be kept in operation for the foreseeable future.

The plumbing system will be substantially demolished when the facility is renovated. Domestic hot water is currently provided by steam to water converters which are in poor repair. The systems should be replaced with gas fired units.

The facility is partially sprinkled and the existing 5” fire entrance is undersized for the facility. A complete fire sprinkler system should be installed when the facility is renovated. It is likely a fire pump will also be required to comply with current codes.

In September 2007, a series of follow up inspections were conducted by I.C. Thomasson to update the status of the building’s mechanical systems. The full report is available in the appendix.
Campus Security
The campus has on-site security during some hours of operation.

4.2.3 Community Setting
Walters State’s facility is located adjacent to the historic downtown of Greeneville. The town is the second oldest in Tennessee.

4.3 FUTURE CAMPUS REQUIREMENTS
4.3.1 Proposed Academic Programs
After a series of interviews, the following academic programs have been proposed by Greeneville faculty.

Surgery Technician - The program trains graduates to assist in the care and preparation of the surgical patients by performance of routine and delegated duties according to standards and policies of the department and hospital to assure quality patient care. This program will need to be approved by TBR or THEC.

Associates of Science Teaching (AST) - The associates of Science Teaching program would prepare graduates for bachelors of teacher education programs in a four year universities. This program has been approved by college curriculum and academic affairs. The program will need to be approved by TBR or THEC.

Sound and Light Technologies – trains graduates in the setting up and controlling of sound and lighting equipment for entertainment venues

4.3.2 Space Needs
The college has made projections for future phases of FTE student enrollment growth. These projections are not tied to particular years, although time periods of 5-10-15 years may be applicable. This approach allows for flexibility in campus/center growth, independent of time.

Full Time Enrollment (FTE) Projections

<table>
<thead>
<tr>
<th>Year / Phase</th>
<th>Students FTE</th>
<th>Faculty</th>
<th>Staff</th>
<th>Total People</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>475 Students</td>
<td>22 Faculty</td>
<td>10 Staff</td>
<td>507 People</td>
</tr>
<tr>
<td>Phase I</td>
<td>550 Students</td>
<td>25 Faculty</td>
<td>12 Staff</td>
<td>587 People</td>
</tr>
<tr>
<td>Phase II</td>
<td>625 Students</td>
<td>28 Faculty</td>
<td>13 Staff</td>
<td>666 People</td>
</tr>
<tr>
<td>Phase III</td>
<td>700 Students</td>
<td>32 Faculty</td>
<td>15 Staff</td>
<td>747 People</td>
</tr>
</tbody>
</table>

Space Needs Analyses
Using the FTE projections and the THEC and Georgia models, space requirements for each campus/center have been calculated, within the eight HEGIS space classifications. These space needs have been compared to existing and planned NASF for each space type, showing either projected surpluses or shortages of space and percentages of available space. Shortages are shown in parentheses and highlighted for emphasis on the following tables. The recommended model numbers are also bolded for emphasis.

Space Requirements by Campus / Center and Space Type
The projected space needs have been adjusted to reflect the TBR Branch Campus/Center model, where less than
100% of projected space needs are justified for all but Classrooms and Class Labs. Each Space Type is described in more detail in the following section:

Greeneville Center: Classroom NASF

<table>
<thead>
<tr>
<th>Space Type / Model</th>
<th>Existing</th>
<th>2006</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
</tr>
<tr>
<td>Classroom: THEC</td>
<td>14,216</td>
<td>4,542</td>
<td>9,671</td>
<td>5,259</td>
<td>8,957</td>
</tr>
<tr>
<td>Classrooms Georgia</td>
<td>14,216</td>
<td>6,371</td>
<td>7,845</td>
<td>7,377</td>
<td>6,839</td>
</tr>
</tbody>
</table>

As expected, the Georgia model shows more need for Classroom space than does the THEC model and should be used to guide planning. Nevertheless, there is a surplus of Classroom space shown for this center, which may provide opportunity for some reallocation of space to meet other needs. However, due to original layout of the building, most classrooms are to small, the average classroom size is less than 500 sq. ft.

Greeneville Center: Class Lab NASF

<table>
<thead>
<tr>
<th>Space Type / Model</th>
<th>Existing</th>
<th>2006</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
</tr>
<tr>
<td>Class Lab: THEC</td>
<td>13,915</td>
<td>6,679</td>
<td>7,236</td>
<td>7,734</td>
<td>6,181</td>
</tr>
<tr>
<td>Class Lab: Georgia</td>
<td>13,915</td>
<td>8,313</td>
<td>5,603</td>
<td>9,625</td>
<td>4,290</td>
</tr>
</tbody>
</table>

As expected, the Georgia model shows more need for Class Lab space than does the THEC model and should guide planning. There are space surpluses shown by both models, however, which may provide opportunity for some reallocation of space to meet other needs. There are also particular identified needs for open computer labs to support Web and Developmental Studies courses.

Greeneville Center: Instructional Office NASF

<table>
<thead>
<tr>
<th>Space Type / Model</th>
<th>Existing</th>
<th>2006</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
</tr>
<tr>
<td>Instructional Office: THEC</td>
<td>8,652</td>
<td>3,325</td>
<td>5327</td>
<td>3,850</td>
<td>4,802</td>
</tr>
<tr>
<td>Average</td>
<td>2,918</td>
<td>5,735</td>
<td>3,378</td>
<td>3,815</td>
<td>4,837</td>
</tr>
<tr>
<td>Faculty Offices: Georgia</td>
<td>8,652</td>
<td>2,510</td>
<td>6,142</td>
<td>2,906</td>
<td>5,746</td>
</tr>
</tbody>
</table>
While both models show similar needs for Faculty Office space, neither model shows a need for additional Faculty Office space at this center. The planner recommends using an average of the two calculations to guide planning for Faculty Office space.

Greeneville Center: Administrative Staff Office NASF

<table>
<thead>
<tr>
<th>Space Type / Model</th>
<th>Existing</th>
<th>2006</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
</tr>
<tr>
<td>Admin Offices: THEC</td>
<td>4,013</td>
<td>998</td>
<td>3,016</td>
<td>1,155</td>
<td>2,858</td>
</tr>
<tr>
<td>Average</td>
<td>740</td>
<td>3,274</td>
<td>857</td>
<td>3,156</td>
<td>959</td>
</tr>
<tr>
<td>Staff Offices: Georgia</td>
<td>4,013</td>
<td>482</td>
<td>3,531</td>
<td>558</td>
<td>3,455</td>
</tr>
</tbody>
</table>

Despite the differences in the two models’ methodologies, neither model shows a need for additional Administrative/staff office space. An average of the two model calculations should guide planning for future phases of Administrative Office development.

Greeneville Center: Library NASF

<table>
<thead>
<tr>
<th>Space Type / Model</th>
<th>Existing</th>
<th>2006</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
</tr>
<tr>
<td>Library: THEC</td>
<td>867</td>
<td>3,232</td>
<td>(2,365)</td>
<td>3,742</td>
<td>(2,875)</td>
</tr>
<tr>
<td>Average</td>
<td>3,091</td>
<td>(2,224)</td>
<td>3,579</td>
<td>(2,712)</td>
<td>4,067</td>
</tr>
<tr>
<td>Library: Georgia</td>
<td>867</td>
<td>2,949</td>
<td>(2,082)</td>
<td>3,415</td>
<td>(2,548)</td>
</tr>
</tbody>
</table>

Despite slight differences in methodologies, the two models show very similar needs for Library space at this center, with both models showing deficits. The average of these deficits should be addressed during all phases of future center development.

Greeneville Center: Physical Education / Special Use NASF

<table>
<thead>
<tr>
<th>Space Type / Model</th>
<th>Existing</th>
<th>2006</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
</tr>
<tr>
<td>Physical Ed.: THEC</td>
<td>892</td>
<td>0</td>
<td>892</td>
<td>0</td>
<td>892</td>
</tr>
<tr>
<td>Special Use: Georgia</td>
<td>892</td>
<td>0</td>
<td>892</td>
<td>0</td>
<td>892</td>
</tr>
</tbody>
</table>

Because the TBR Branch Campus/Center formula was used for this center, there is no need shown by either model for physical education, recreation, media production, clinic, or demonstration space.
Greeneville Center: Student Services / General Use NASF

<table>
<thead>
<tr>
<th>Space Type / Model</th>
<th>Existing</th>
<th>2006</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Project-</td>
<td>Surplus /</td>
<td>Project-</td>
<td>Surplus /</td>
<td>Project-</td>
</tr>
<tr>
<td></td>
<td>ed Need</td>
<td>Shortage</td>
<td>ed Need</td>
<td>Shortage</td>
<td>ed Need</td>
</tr>
<tr>
<td>Student Services</td>
<td>2,240</td>
<td>2,197</td>
<td>43</td>
<td>2,544</td>
<td>(304)</td>
</tr>
<tr>
<td>General Use</td>
<td>2,240</td>
<td>2,535</td>
<td>(295)</td>
<td>2,935</td>
<td>(695)</td>
</tr>
</tbody>
</table>

Because no projections were made for assembly, exhibition, student union, or conferencing space at branch campuses/centers, there are very similar needs shown for Student Services/General Use space at this center. The plan should address projected THEC model Student Services deficits during all phases of center development.

Greeneville Center: Physical Plant / Support NASF

<table>
<thead>
<tr>
<th>Space Type / Model</th>
<th>Existing</th>
<th>2006</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Project-</td>
<td>Surplus /</td>
<td>Project-</td>
<td>Surplus /</td>
<td>Project-</td>
</tr>
<tr>
<td></td>
<td>ed Need</td>
<td>Shortage</td>
<td>ed Need</td>
<td>Shortage</td>
<td>ed Need</td>
</tr>
<tr>
<td>Physical Plant</td>
<td>598</td>
<td>545</td>
<td>53</td>
<td>631</td>
<td>(33)</td>
</tr>
<tr>
<td>THEC</td>
<td>598</td>
<td>947</td>
<td>(349)</td>
<td>1,097</td>
<td>(499)</td>
</tr>
</tbody>
</table>

Again, because of the different space types and multipliers used in the two models, it would be difficult to make meaningful comparisons. Both models show deficits for Physical Plant/Support space at this center, with the Georgia model showing the greater need. The THEC model’s Physical Plant deficits should be addressed in all phases of future center development.

Space Needs Summary

<table>
<thead>
<tr>
<th>Space Type / Model</th>
<th>Model</th>
<th>Existing</th>
<th>2006</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Project-</td>
<td>Surplus /</td>
<td>Project-</td>
<td>Surplus /</td>
<td>Project-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ed Need</td>
<td>Shortage</td>
<td>ed Need</td>
<td>Shortage</td>
<td>ed Need</td>
</tr>
<tr>
<td>Classroom</td>
<td>GA</td>
<td>14,216</td>
<td>6,371</td>
<td>7,845</td>
<td>7,377</td>
<td>6,839</td>
</tr>
<tr>
<td>Class Labs</td>
<td>GA</td>
<td>13,915</td>
<td>8,313</td>
<td>5,602</td>
<td>9,625</td>
<td>4,290</td>
</tr>
<tr>
<td>Instr. Office</td>
<td>Avg</td>
<td>8,652</td>
<td>2,918</td>
<td>5,734</td>
<td>3,378</td>
<td>5,274</td>
</tr>
<tr>
<td>Admin</td>
<td>Avg</td>
<td>4,013</td>
<td>740</td>
<td>3,273</td>
<td>857</td>
<td>3,156</td>
</tr>
<tr>
<td>Library</td>
<td>Avg</td>
<td>867</td>
<td>3,091</td>
<td>(2,224)</td>
<td>3,579</td>
<td>(2,712)</td>
</tr>
<tr>
<td>Physical Ed</td>
<td>GA</td>
<td>892</td>
<td>0</td>
<td>892</td>
<td>0</td>
<td>892</td>
</tr>
<tr>
<td>Student Ser</td>
<td>TN</td>
<td>2,240</td>
<td>2,197</td>
<td>43</td>
<td>2,544</td>
<td>(304)</td>
</tr>
<tr>
<td>Plant Support</td>
<td>TN</td>
<td>598</td>
<td>545</td>
<td>53</td>
<td>631</td>
<td>(33)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>45,393</td>
<td>24,175</td>
<td>21,218</td>
<td>27,991</td>
<td>17,402</td>
</tr>
</tbody>
</table>

There are large projected sq. ft. deficits during Phase I in Library.
4.3.3 Parking Requirements
The Greeneville facility currently has approximately 140 on-site parking spaces for students and faculty. This parking currently does not meet current demand and has caused many students to park in surrounding private lots. Projections indicate a current need for 365 parking spaces.

140 spaces / 507 people (2006 FTE) = 0.28 parking spaces per person

Projected Parking Needs

<table>
<thead>
<tr>
<th>Year</th>
<th>Total People</th>
<th>Total Projected Parking*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>507 People</td>
<td>365 Spaces*</td>
</tr>
<tr>
<td>2011</td>
<td>587 People</td>
<td>423 Spaces*</td>
</tr>
<tr>
<td>2016</td>
<td>666 People</td>
<td>480 Spaces*</td>
</tr>
<tr>
<td>2021</td>
<td>747 People</td>
<td>538 Spaces*</td>
</tr>
</tbody>
</table>

* Projection Assumptions: Current driving habits will continue into the future and 0.72 parking spaces per person average.

4.3.4 Proposed Land Acquisition / Disposition

Rhea Building
Acquired for its land, the Rhea property would provide WSCC with much needed parking. The building could be used for academic purposes or razed. As parking needs increased the site would be an ideal location for a parking garage.

Laughlin Square
Proposed as a future acquisition, Laughlin Square Shopping Center would provide WSCC with much needed additional parking and large classroom spaces. The College Street side of the building currently housing Ross Furniture would be used for academic purposes. The Main Street side of the building currently a doctor's office would become a rental property for an educational oriented tenant. The large parking lot is the proposed site for the new WSCC Learning Center.
Conversion of this building into classroom space is estimated to cost $3,640,000 dollars. ($130 per sq. ft. X 28,000 sq. ft. = $3,640,000 in 2008 dollars)

Little Theatre of Greeneville
Offered by the City of Greeneville as a possible acquisition, the Little Theatre of Greeneville would allow Walters State to develop a theatre management program. The theatre and adjoining Roby Senior Citizens Center would require several infrastructure upgrade before this could become a usable facility.

Renovation of this building into theatre space is estimated to cost $800,000 dollars. (4,000 sq. ft. X $200 per sq. ft. = $800,000 in 2008 dollars)
4.4.1 Proposed Buildings and Additions

Learning Center Building

Proposed in the community developed city master plan called “ReDiscover Greeneville,” the 46,500 sq. ft. WSCC Learning Center would be a shared facility between the Greene County Public Library and Walters State. The library would occupy the lower levels of the building functioning as the county’s main branch and Walters State’s Greeneville campus library. The upper levels of the building would be occupied by Walters State and house classrooms and faculty offices.

The Learning Center would serve as an anchor building connecting Niswonger Performing Arts Center and Greeneville High School to Walters State and the city in what ReDiscover Greeneville proposes as an academic corridor. The facility would be located at the corner of College Street and Tusculum Boulevard.

The Walters State Adult Basic Education Program would be relocated to this building to better serve the community. The facility would potentially be owned by the Walters State Foundation and the lower levels would be leased back to the county on a long term lease for the Public Library.

The estimated construction cost for this building would be $11.2 million dollars. (46,500 sq. ft. X $240 per sq. ft. = $11,160,000 in 2008 dollars)
Administrative Addition

Proposed in the 2002 Walters State Greeneville Master Plan Update, the 6,000 sq. ft. Administrative addition would house all campus administrative functions and serve as Walters State's new front door to campus. It would have an auditorium for Walters State and local community use. The building would be located on College Street and be visible from Tusculum Boulevard. The building would be connected to or directly adjacent to WSCC existing Greeneville facility.

The estimated cost of the building addition would be $1.2 million dollars. (6,000 sq. ft. X $200 per sq. ft. = $1,200,000 in 2008 dollars)

4.4.2 Campus Edge Improvements

To help unify and define the campus edge it is proposed that a series of architectural elements be constructed at key points along the campus edge similar in style to the surrounding historic architecture. These elements could include brick and metal fencing, brick entrance markers, changes in paving material, use of WCSS's logo in materials and benches. The elements would be complemented with the addition of trees and seasonal plantings.
4.4.3 Space Reallocation
Space within the existing Greeneville / Greene County Center for Higher Education needs to be reorganized to include additional student services space including a student success center.

4.4.4 Existing Facility Improvements
The existing Greeneville facility is over 148,000 square-foot. Acquired in 1996 the building was previous used and owned by Laughlin Memorial Hospital. The design and concrete construction of the building makes it difficult to convert into functional education space. In addition, the facility's plumbing, electrical, HVAC and sprinkler systems are in need of upgrades and/or replacement.

The oldest portion of the building fronting Main Street is currently not being utilized by Walters State and is the most difficult space to be converted into usable classroom space. It is currently in disrepair and is being considered as a potential demolition.
4.5 IMPLEMENTATION

It is recommended the oldest portion of this facility be demolished. This would reduce the building’s size by 60,000 +/- square feet.

2007 - Projected Need 365 Parking Spaces

<table>
<thead>
<tr>
<th>Campus</th>
<th>Spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greeneville Campus</td>
<td>140</td>
</tr>
<tr>
<td>Privileges to park on Orthopedic Clinic Property</td>
<td>100</td>
</tr>
<tr>
<td>Acquire Laughlin Square Shopping Center</td>
<td>235</td>
</tr>
<tr>
<td>- Construct Library</td>
<td>-80</td>
</tr>
<tr>
<td>Total</td>
<td>395</td>
</tr>
</tbody>
</table>

Phase I – Projected Need 423 Parking Spaces

<table>
<thead>
<tr>
<th>Campus</th>
<th>Spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greeneville Campus</td>
<td>140</td>
</tr>
<tr>
<td>- Construct Bldg. Addition</td>
<td>-20</td>
</tr>
<tr>
<td>Orthopedic Clinic Property</td>
<td>100</td>
</tr>
<tr>
<td>Laughlin Square Shopping Center</td>
<td>155</td>
</tr>
<tr>
<td>- Acquire Rhea Shopping Center</td>
<td>119</td>
</tr>
<tr>
<td>Total</td>
<td>494</td>
</tr>
</tbody>
</table>

Phase II – Projected Need 480 Parking Spaces

<table>
<thead>
<tr>
<th>Campus</th>
<th>Spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greeneville Campus</td>
<td>120</td>
</tr>
<tr>
<td>Orthopedic Clinic Property</td>
<td>100</td>
</tr>
<tr>
<td>Laughlin Square Shopping Center</td>
<td>155</td>
</tr>
<tr>
<td>Rhea Shopping Center</td>
<td>119</td>
</tr>
<tr>
<td>Total</td>
<td>494</td>
</tr>
</tbody>
</table>

Phase III – Need 538 Parking Spaces

<table>
<thead>
<tr>
<th>Campus</th>
<th>Spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greeneville Campus</td>
<td>120</td>
</tr>
<tr>
<td>- Convert lot to pedestrian space</td>
<td>-20</td>
</tr>
<tr>
<td>Orthopedic Clinic Property</td>
<td>100</td>
</tr>
<tr>
<td>Laughlin Shopping Center</td>
<td>155</td>
</tr>
<tr>
<td>Rhea Shopping Center</td>
<td>119</td>
</tr>
<tr>
<td>- Construct 200 Car Parking Garage</td>
<td>157</td>
</tr>
<tr>
<td>Total</td>
<td>631</td>
</tr>
</tbody>
</table>
5.0 CAMPUS OVERVIEW
The Tazewell Extension is located a 907 Main Street in New Tazewell. The leased facility contains seven classrooms, a biology lab, computer science lab, an Educast classroom, administrative offices, and a student lounge area. General education courses as well as select technology courses are available to over 300 credit students. The lease on the space expires in November of 2009 and is non-renewable.

5.1 CAMPUS GOALS
In April 2007, interviews were conducted with WSCC students and staff, the following goals were generated from these interviews and represent a comprehensive overview of the center's immediate and long term goals.

Goals:
• Increased Course Offerings
• Develop Healthcare and Nursing Program (2 year AST degree that would transfer to Lincoln Memorial University)
• Increase Student Services
• Relocate to a New / Better Facility

5.2 EXISTING CAMPUS CONDITIONS
5.2.1 Buildings and Grounds
Since 1994, Walter State Community College has leased tenant space in a Tazewell shopping center. The facility's maintenance and general upkeep (including parking) is handled by the shopping center's owner. All interior improvements and general maintenance is performed by the college.
5.3 FUTURE CAMPUS REQUIREMENTS

5.3.1 Proposed Academic Programs

The following list of academic program is suggested for development by Tazewell faculty.

Associates of Science Teaching (AST) - The associates of Science Teaching program would prepare graduates for bachelors of teacher education programs in a four year universities. This program has been approved by college curriculum and academic affairs. The program will need to be approved by TBR or THEC.

5.3.2 Space Needs

Full Time Enrollment (FTE) Projections

The college has made projections for future phases of FTE student enrollment growth. These projections are not tied to particular years, although time periods of 5-10-15 years may be applicable. This approach allows for flexibility in campus/center growth, independent of time.

<table>
<thead>
<tr>
<th>Year / Phase</th>
<th>Students FTE</th>
<th>Faculty</th>
<th>Staff</th>
<th>Total People</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>132 Students</td>
<td>6 Faculty</td>
<td>3 Staff</td>
<td>141 People</td>
</tr>
<tr>
<td>Phase I</td>
<td>150 Students</td>
<td>7 Faculty</td>
<td>3 Staff</td>
<td>160 People</td>
</tr>
<tr>
<td>Phase II</td>
<td>170 Students</td>
<td>8 Faculty</td>
<td>4 Staff</td>
<td>182 People</td>
</tr>
<tr>
<td>Phase III</td>
<td>190 Students</td>
<td>9 Faculty</td>
<td>4 Staff</td>
<td>203 People</td>
</tr>
</tbody>
</table>

Space Needs Analyses

Using the FTE projections and the THEC and Georgia models, space requirements for each campus/center have been calculated, within the eight HEGIS space classifications. These space needs have been compared to existing and planned NASF for each space type, showing either projected surpluses or shortages of space and percentages of available space. Shortages are shown in parentheses and highlighted for emphasis on the following tables. The recommended model numbers are also bolded for emphasis.

Space Requirements by Campus/Center and Space Type

As for all branch campuses/centers, the projected space needs have been adjusted to reflect the TBR Branch Campus/Center model, where less than 100% of projected space needs are justified for all but Classrooms and Class Labs. Each Space Type is described in more detail in the following section:

Claiborne County Center: Classroom NASF

<table>
<thead>
<tr>
<th>Space Type / Model</th>
<th>Existing</th>
<th>2006</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
</tr>
<tr>
<td>Classrooms: THEC</td>
<td>3,750</td>
<td>1,262</td>
<td>2,488</td>
<td>1,434</td>
<td>2,316</td>
</tr>
<tr>
<td>Classrooms: Georgia</td>
<td>3,750</td>
<td>1,771</td>
<td>1,979</td>
<td>2,012</td>
<td>1,738</td>
</tr>
</tbody>
</table>
As expected, the Georgia model shows more need for Classroom space than does the THEC model, although neither model shows a projected deficit of space. The Georgia model should guide any reallocation of Classroom space to other functions.

Claiborne County Center: Class Lab NASF

<table>
<thead>
<tr>
<th>Space Type / Model</th>
<th>Existing</th>
<th>2006 Projected Need</th>
<th>Phase I Projected Need</th>
<th>Phase II Projected Need</th>
<th>Phase III Projected Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Lab: THEC</td>
<td>1,850</td>
<td>(6)</td>
<td>2,109</td>
<td>2,391</td>
<td>2,672</td>
</tr>
<tr>
<td>Class Lab: Georgia</td>
<td>1,850</td>
<td>(460)</td>
<td>2,625</td>
<td>2,975</td>
<td>3,325</td>
</tr>
</tbody>
</table>

As expected, the Georgia model again shows slightly more need for Class Lab space than does the THEC model and should guide planning. There are deficits shown by both models, however, that should be addressed in any planned expansion of Class Lab space at this center. In particular, there are identified needs for open computer labs to support Web and Developmental Studies courses.

Claiborne County Center: Instructional Office NASF

<table>
<thead>
<tr>
<th>Space Type / Model</th>
<th>Existing</th>
<th>2006 Projected Need</th>
<th>Phase I Projected Need</th>
<th>Phase II Projected Need</th>
<th>Phase III Projected Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructional Offices: THEC</td>
<td>80</td>
<td>924</td>
<td>1,050</td>
<td>1,190</td>
<td>1,330</td>
</tr>
<tr>
<td>Average</td>
<td>820</td>
<td>(740)</td>
<td>932</td>
<td>1,060</td>
<td>1,130</td>
</tr>
<tr>
<td>Faculty Offices: Georgia</td>
<td>80</td>
<td>716</td>
<td>814</td>
<td>930</td>
<td>930</td>
</tr>
</tbody>
</table>

While both models show deficits for Faculty Office space, the THEC model shows a greater need than does the Georgia model at this center. The planner recommends using an average of the two calculations to guide planning for future Faculty Office space.

Claiborne County Center: Administrative Staff Office NASF

<table>
<thead>
<tr>
<th>Space Type / Model</th>
<th>Existing</th>
<th>2006 Projected Need</th>
<th>Phase I Projected Need</th>
<th>Phase II Projected Need</th>
<th>Phase III Projected Need</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrative Offices: THEC</td>
<td>220</td>
<td>277</td>
<td>315</td>
<td>357</td>
<td>399</td>
</tr>
<tr>
<td>Average</td>
<td>200</td>
<td>20</td>
<td>228</td>
<td>272</td>
<td>293</td>
</tr>
<tr>
<td>Staff Offices: Georgia</td>
<td>220</td>
<td>123</td>
<td>140</td>
<td>186</td>
<td>186</td>
</tr>
</tbody>
</table>

2008 MASTER PLAN UPDATE
Walters State Community College
Despite the differences in the two models’ methodologies, both models show minimal needs for additional Administrative staff office space. An average of these two calculations should guide future phases of center development.

Claiborne County Center: Library NASF

<table>
<thead>
<tr>
<th>Space Type / Model</th>
<th>Existing</th>
<th>2006</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
</tr>
<tr>
<td>Library: THEC</td>
<td>0</td>
<td>900</td>
<td>(900)</td>
<td>1,023</td>
<td>(1,023)</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>862</td>
<td>(862)</td>
<td>980</td>
<td>(980)</td>
</tr>
<tr>
<td>Library: Georgia</td>
<td>0</td>
<td>824</td>
<td>(824)</td>
<td>936</td>
<td>(936)</td>
</tr>
</tbody>
</table>

Despite slight differences in methodologies, the two models show very similar needs for Library space at this center, and both models show deficits of Library space. Apparently there is no classified Library space at the current facility. An average of these Library deficits should be addressed in planning for future center development.

Claiborne County Center: Physical Education / Special Use NASF

<table>
<thead>
<tr>
<th>Space Type / Model</th>
<th>Existing</th>
<th>2006</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
</tr>
<tr>
<td>Physical Ed.: THEC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Special Use: Georgia</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Because the TBR Branch Campus/Center formula was used for this center, there is no need shown by either model for physical education, recreation, media production, clinic, or demonstration space.

Claiborne County Center: Student Services / General Use NASF

<table>
<thead>
<tr>
<th>Space Type / Model</th>
<th>Existing</th>
<th>2006</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
</tr>
<tr>
<td>Student Service: THEC</td>
<td>400</td>
<td>611</td>
<td>(211)</td>
<td>694</td>
<td>(294)</td>
</tr>
<tr>
<td>General Use: Georgia</td>
<td>400</td>
<td>704</td>
<td>(304)</td>
<td>800</td>
<td>(400)</td>
</tr>
</tbody>
</table>
Because no projections were made for assembly, exhibition, student union, or conferencing space at branch campuses/centers, there are similar needs shown for Student Services/General Use space at this center.

There are deficits shown for Student Services/General Use space in all phases. The plan should address projected THEC model Student Services deficits during center development.

Claiborne County Center: Support/ Physical Plant NASF

<table>
<thead>
<tr>
<th>Space Type / Model</th>
<th>Existing</th>
<th>2006</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
</tr>
<tr>
<td>Support. : THEC</td>
<td>50</td>
<td>151</td>
<td>(101)</td>
<td>172</td>
<td>(122)</td>
</tr>
<tr>
<td>Support: Georgia</td>
<td>50</td>
<td>279</td>
<td>(229)</td>
<td>317</td>
<td>(267)</td>
</tr>
</tbody>
</table>

There is currently minimal Physical Plant space provided at this center. Both models show similar deficits for Physical Plant/Support space at this center, with the Georgia model showing the greater need. The THEC model Physical Plant deficits should be addressed in all phases of future campus development.

Space Needs Summary

<table>
<thead>
<tr>
<th>Space Type / Model</th>
<th>Model</th>
<th>Existing</th>
<th>2006</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Projected Need</td>
<td>Surplus / Shortage</td>
<td>Projected Need</td>
</tr>
<tr>
<td>Classroom</td>
<td>GA</td>
<td>3,750</td>
<td>1,771</td>
<td>1,979</td>
<td>2,012</td>
<td>1,738</td>
</tr>
<tr>
<td>Class Labs</td>
<td>GA</td>
<td>1,850</td>
<td>2,310</td>
<td>(460)</td>
<td>2,625</td>
<td>(775)</td>
</tr>
<tr>
<td>Instr. Office</td>
<td>Avg</td>
<td>80</td>
<td>820</td>
<td>(740)</td>
<td>932</td>
<td>(852)</td>
</tr>
<tr>
<td>Admin.</td>
<td>Avg</td>
<td>220</td>
<td>200</td>
<td>20</td>
<td>228</td>
<td>(8)</td>
</tr>
<tr>
<td>Library</td>
<td>Avg</td>
<td>0</td>
<td>862</td>
<td>(862)</td>
<td>980</td>
<td>(980)</td>
</tr>
<tr>
<td>Physical Ed.</td>
<td>GA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Student Ser.</td>
<td>TN</td>
<td>400</td>
<td>611</td>
<td>(211)</td>
<td>694</td>
<td>(294)</td>
</tr>
<tr>
<td>Plant Support</td>
<td>TN</td>
<td>50</td>
<td>151</td>
<td>(101)</td>
<td>172</td>
<td>(122)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>6,350</td>
<td>6,725</td>
<td>(375)</td>
<td>7,643</td>
<td>(1,293)</td>
</tr>
</tbody>
</table>

There are large projected sq. ft. deficits during Phase I in Library, Instructional Office and Class Lab.
5.3.3 Parking Projections
Walters State’s current Tazewell facility shares parking with surrounding businesses. Many of the businesses located within the shopping center do not operate in the late evening hours when classes are offered. The Tazewell facility currently does not have any parking problems.

If Walters State were to relocate to a new facility, below are the projected parking needs in the future:

<table>
<thead>
<tr>
<th>Year</th>
<th>Total People</th>
<th>Total Projected Parking*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>132 People</td>
<td>96 Spaces*</td>
</tr>
<tr>
<td>2011</td>
<td>150 People</td>
<td>108 Spaces*</td>
</tr>
<tr>
<td>2016</td>
<td>170 People</td>
<td>123 Spaces*</td>
</tr>
<tr>
<td>2011</td>
<td>190 People</td>
<td>137 Spaces*</td>
</tr>
</tbody>
</table>

* Projection Assumptions: Current driving habits will continue into the future and 0.72 parking spaces per person average.

5.3.4 Proposed Land Acquisition / Disposition
Walters State will lose its current lease in June 2009. Plans for relocation will soon be underway. One potential location is the former Claiborne County High School. This facility is currently unoccupied and in need of redevelopment. It is a brick structure built in phases during the 1950-60s and sits on a 9 acre site.

If Walters State were to acquire this property parts of the building will have to be renovated to meet current codes and educational requirements. In additional older unusable parts of the building may have to be demolished to reduce long term maintenance costs.

The renovation costs for this building is estimate to be $9 million dollars. (75,000 sq. ft X $120 per sq. ft. = $9,000,000 in 2008 dollars)
Appendix A:

Appendix B:
Claibourne County High School Floor Plans Claibourne Co. School System

Appendix C:
WS Campus Safety and Protection Master Plan WS Campus Police Dept.

Appendix D:
Proposed Construction - Cost Summary Chart
MORRISTOWN CAMPUS - General
Mechanical, Plumbing and Fire Protection

The majority of the buildings on the Walter State Campus are served from the Central Plant located in the basement of the College Center. The chilled water plant consists of two 600 ton and one 400 ton water cooled chillers. The chillers each have a dedicated cooling tower, two of the towers are interconnected to allow either tower to serve a chiller. The third tower is not interconnected. Typically one chiller is capable of cooling the campus. However, when the outdoor temperature is above 90F, a second chiller is need. The third chiller is a spare chiller.

The chillers are in good condition and appear to be well maintained. Refrigerant monitors and exhaust fans are in place. The oldest chiller was installed in the mid 90's and uses a HCFC refrigerant, R-123, the phase out of this refrigerant has been accelerated by recent legislation which could effect maintenance of the chiller in the future. The second chiller is a York engine driven chiller that has been converted from natural gas to electric driven. The newest chiller is a York chiller and was installed in 2001. Both York chillers use a non HCFC refrigerant R-134a which does not have a phase out date.

The control system for the campus is a Johnson Control system. The system is a current system and in good repair.

Heating water is provided by gas fired boilers. The boilers are in good repair with an estimated remaining useful life of 10 to 15 years. Heating water is supplied to the buildings using a preinsulated piping system. The system is in good repair and was replaced in the past five years.

Domestic water to the campus is provided by the local utility. The local utility has two systems a low pressure and high pressure system. The domestic water is supplied from the low pressure system. The pressure is low and all buildings are required to have a pressure boosting system. All buildings are equipped with deduced pressure backflow preventers.

The fire protection lines on the campus are served from the high pressure system. Consideration should be given to connecting the domestic water supply to the high pressure system. Connecting to the high pressure system would eliminate the pressure boosting pumps in the buildings.

Consideration should be given to pretreating the make up water to the mechanical equipment. The utility water is very hard and significant calcium deposits are visible on all mechanical equipment. Piping to the cooling towers should be revised to allow any chiller to be served by any tower.

The existing chilled water plant has the capacity to add an estimated 90,000 square feet of new construction and still maintain a spare chiller. The heating plant has the capacity to add an estimated 10,000 square feet of new construction.
COLLEGE CENTER BUILDING
MECHANICAL, PLUMBING AND FIRE PROTECTION

The College Center is a multipurpose building which houses administrative offices, food services, a book store, and classrooms. The majority of the building is heated and cooled using a four pipe fan coil system. Outdoor air is supplied by a central air handler located in the basement. The fan coils and air handler are in good condition and have been recently replaced. However, outdoor air to the third floor is low due to long duct runs. Consideration should be given to installing a separate unit to serve the third floor. A unit could easily be installed on the roof. Installing the unit would also eliminate a large quantity of exposed ductwork.

Areas in the building which need improvements to the HVAC system are: Kitchen, Dining, Print Shop, Information Desk, Gym and restroom exhaust.

The grease hood in the kitchen is in poor repair and does not meet current codes. Consideration should be given to replacing the grease hood and fan in the near future.

A large portion of the dining and the print shop are served by overhead fan coils. The overhead fan coils make the space unusable when the units are in operation. In the dining area the units are loaded to the point a normal conversation cannot be carried on. In the Print Shop when the units are in operation, papers are moved on the desks and table. The HVAC system in these areas should be redesigned with consideration given to the use of the spaces.

The information desk was constructed by enclosing an exterior portion of the main lobby. The information center has a large and different internal load from the lobby. At times the Information Center is not properly heated or cooled. Consideration should be given to providing a separate heating and cooling unit for this area.

The Gym is heated and ventilated only and is the main assembly area for the campus which results is several hundred people in the gym during graduations and large activities. The large occupant load cannot be met by ventilation only, and when large events are held, the gym is uncomfortable. Consideration should be given to providing air conditioning to the Gym.

The ventilation rate in the restrooms appears to be low. During the walk through, odors were noticed in the restrooms.

The elevator shaft is not vented as required by code. Current codes require three square feet of open vent to the outdoors. The vent is to be located at the top of the elevator shaft.

Domestic water and sanitary sewer systems appear to be in good repair except for a new handicap restroom located on the third floor. The water closet appears to be connected into a vent riser rather than a sanity riser.

The sprinkler system in the building appears to meet current codes.
ELECTRICAL

Lighting
The majority of the lighting in the College Center consists of recessed and surface mounted 2x4 fluorescent fixtures with energy efficient T8 lamps and electronic ballasts. These fixtures were upgraded as part of an energy savings program recently implemented by the College. Normal lighting levels appear to meet or exceed minimum recommended lighting levels for educational purposes. Emergency lighting is provided by surface mounted battery packs, which appear to be located such that lighting levels in the event of a power loss would be at code minimum. Some concern was expressed about the incandescent lighting fixtures in the lobby and surrounding canopy due to the difficulty involved in re-lamping the fixtures. Currently, a lift is required to perform maintenance on these fixtures.

Power Distribution
The electrical service for the College Center is a 1600A, 480/277V, 3 phase service that appears to be in good working order with spare capacity for expansion.

Branch panels are located throughout the building in electrical closets to feed the lighting and receptacles circuits. There is limited spare capacity in these panels for additional circuits.

Fire Alarm
The main fire alarm system in the College Center is an older Faraday system that appears to be in good working order. The fire alarm devices consist of smoke detectors, magnetic door holders, and audible and visual alarm indicating devices, which are located throughout the building at what appears to meet code minimum.

Voice/Data
There appears to be sufficient voice and data outlets in the College Center. There did not appear to be any redundancy of the backbone line, however, which connects the college center with the other buildings on campus. Also, the Computer center in the College Center is currently the hub for all of Walter State’s East Tennessee campuses. With no emergency power implemented, it was noted that a loss of power at the College Center results in 3/4 of the campuses losing their phone connections.

Clocks
The master clock system in the College Center appears to be inoperable. Battery operated clocks are installed in areas as needed.

Security
There is currently not a security system or surveillance system present in the College Center.

Recommendations
1. Replace lobby and canopy lighting with wall mounted direct/indirect fixtures which can be more easily accessed to maintain. Provide daylighting controls on these fixtures and interconnect with the existing Lutron lighting panel, which has significant spare capacity, in an effort to conserve utility costs.
2. Install a fiber optic “loop” between the buildings to provide redundancy for the communications system.
3. Install a generator to provide emergency power to communications center in the College Center in the event of a power failure.
4. Implement a campus wide security system including closed circuit cameras, magnetic door locks and central monitoring system.
5. Upgrade the fire alarm system and fire alarm devices to a fully addressable system that is capable of notifying the local fire department and facility personnel electronically. Integrate this system with the other building fire alarm systems on the Morristown campus, and provide a remote annunciator where it can be easily monitored.
6. Install a wireless clock system, such as Primex, that can synchronize all clocks on campus from a central point.

HUMANITIES COMPLEX
MECHANICAL, PLUMBING AND FIRE PROTECTION
The Humanities complex is served by package roof top units. The units are in good repair and have been recently replaced. Two classrooms are served by one unit with one thermostat. Not having individual control for each classroom creates heating and cooling problems since the loads in each classroom are not always the same.

Each classroom could be controlled individually by installing reheat coils in the duct serving each classroom. The roof top unit would supply a constant discharge air temperature and the reheat coils would provide individual temperature control in each classroom.

A pre-engineered metal building is used for the ceramic classroom. The space is heated and vented only. A large kiln in the building is not directly vented to the outdoors. When the kiln is fired, the operator must remember to start an exhaust fan above the kiln. In the past, the fan was not started and slightly damaged the building. Consideration should be given to directly venting the kiln to the outdoors.

Domestic water system, plumbing fixtures and the sanitary sewer systems appear to be in good repair. The pressure boosting system serving the building is in poor repair and near the end of its useful life.

The sprinkler system appears to be in good repair however the dry system serving parts of the building need to be upgraded. Communication wiring was being supported from the sprinkler piping. Sprinkler piping can not be used to support any other piping or wiring.

ELECTRICAL
Lighting
The majority of the lighting in the Humanities Building consists of recessed 2x4 fluorescent fixtures with energy efficient T8 lamps and electronic ballasts. Most of these fixtures were installed as part of a recent renovation project. Normal lighting levels appear to meet or exceed minimum recommended lighting levels for educational purposes. Emergency lighting is provided by battery ballasts installed in fixtures located such that lighting levels in the event of a power loss would meet or exceed code minimum. The lighting levels in the music rooms appear to be less than adequate, and the high fixture mounting height results in difficult re-lamping.

Power Distribution
The electrical service for the Humanities Building is an 800A, 480/277V, 3 phase service that appears to be in good working order with limited spare capacity for expansion.
Branch panels are located throughout the building in electrical closets to feed the lighting and receptacles circuits. There is limited spare capacity in these panels for additional circuits.

Fire Alarm
The main fire alarm system in the Humanities Building is a new Firelite system that was installed during a recent renovation project. It is a fully addressable system and appears to be in excellent working order. The fire alarm devices consist of smoke detectors and audible and visual alarm indicating devices, which are located throughout the building at what appears to meet or exceed code minimum.

Voice/Data
There appears to be sufficient voice and data outlets in the Humanities Building.

Clocks
The master clock system in the Humanities Building appears to be inoperable. Battery operated clocks are installed in areas as needed.

Security
There is currently not a security system or surveillance system present in the Humanities Building.

Recommendations
1. Replace the lighting in the music rooms with pendant hung direct/indirect high efficiency fluorescent fixtures to improve lighting levels and maintenance accessibility.
2. Implement a campus wide security system including closed circuit cameras, magnetic door locks and central monitoring system.
3. Install a wireless clock system, such as Primex, that can synchronize all clocks on campus from a central point.

LIBRARY BUILDING
MECHANICAL, PLUMBING AND FIRE PROTECTION
The library is served by central station air handlers located in mechanical rooms on each floor. The units appear to be in good repair and should have an additional five to ten years of remaining life. However, the return path to the units appears to be restricted. During the walk thru, excessive noise was noted outside the mechanical rooms.

The elevator shaft appears to not be vented as required by code. Current codes require three square feet of vent to the outdoors located at the top of the elevator shaft.

Domestic water system, plumbing fixtures and the sanitary sewer systems appear to be in good repair.

ELECTRICAL
Lighting
The majority of the lighting in the Library consists of recessed 2x4 and compact fluorescent fixtures with energy efficient lamps and electronic ballasts. Normal lighting levels appear to meet or exceed minimum recommended
lighting levels for educational purposes. Emergency lighting is provided by battery ballasts installed in fixtures located such that lighting levels in the event of a power loss would meet code minimum. It was noted that the winch mechanism for chandelier lighting fixtures was problematic and in need of repair or replacement.

Power Distribution
The electrical service for the Library is a 1000A, 480/277V, 3 phase service that appears to be in good working order with limited spare capacity for expansion.

Branch panels are located throughout the building in electrical closets to feed the lighting and receptacles circuits. There is limited spare capacity in these panels for additional circuits.

Fire Alarm
The main fire alarm system in the Library is a Faraday system that appears to be in good working order. The fire alarm devices consist of smoke detectors and audible and visual alarm indicating devices, which are located throughout the building at what appears to meet or exceed code minimum.

Voice/data
There appears to be sufficient voice and data outlets in the Library.

Security
There security system in the Library consists of two exterior doors monitored by cameras and local alarms. It did not appear, however, that the cameras were operating at the time.

Recommendations
1. Replace the winch system for the chandeliers.
2. Implement a campus wide security system including closed circuit cameras, magnetic door locks and central monitoring system.
3. Install a wireless clock system, such as Primex, that can synchronize all clocks on campus from a central point.

MATHEMATICS BUILDING
MECHANICAL, PLUMBING AND FIRE PROTECTION
The building is severed by central station air handlers located in mechanical rooms on the ground floor. The units have been recently replaced and are in good repair.

The mechanical rooms are used as return plenums and have open floor drains. During the winter, the traps on the drains dry out and allow sewer gas to enter the building. The corridors are also being used as a return path. Both the floor drain and using the corridors as a return path are code violations.

Domestic water system, plumbing fixtures and the sanitary sewer systems appear to be in good repair.
ELECTRICAL

Lighting
The majority of the lighting in the Mathematics Building consists of recessed and surface mounted 2x4 fluorescent fixtures with energy efficient T8 lamps and electronic ballasts. These fixtures were upgraded as part of an energy savings program recently implemented by the College. Normal lighting levels appear to meet minimum recommended lighting levels for educational purposes. Emergency power for egress lighting is provided by the generator located outside, which also serves the smoke evacuation system. Egress fixtures appear to be located such that lighting levels in the event of a power loss would meet code minimum.

Power Distribution
The electrical service for the Mathematics Building is a 600A, 480/277V, 3 phase service that appears to be in good working order with spare capacity for expansion.

A generator and corresponding emergency power distribution is in place to provide emergency power for egress lighting and smoke evacuation only.

Branch panels are located throughout the building in electrical closets to feed the lighting and receptacles circuits. There is limited spare capacity in these panels for additional circuits.

Fire Alarm
The main fire alarm system in the Mathematics Building is an older Simplex system that appears to be in good working order. The fire alarm devices consist of smoke detectors, magnetic door holders, and audible and visual alarm indicating devices, which are located throughout the building at what appears to meet code minimum.

Voice/data
There appears to be sufficient voice and data outlets in the Mathematics Building.

Clocks
The master clock system in the Mathematics Building appears to be inoperable. Battery operated clocks are installed in areas as needed.

Security
There is currently not a security system or surveillance system present in the Mathematics Building.

Recommendations
1. Upgrade the fire alarm system and fire alarm devices to a fully addressable system that is capable of notifying the local fire department and facility personnel electronically. Integrate this system with the other building fire alarm systems on the Morristown campus, and provide a remote annunciator where it can be easily monitored.
2. Implement a campus wide security system including closed circuit cameras, magnetic door locks and central monitoring system.
3. Install a wireless clock system, such as Primex, that can synchronize all clocks on campus from a central point.
TECHNICAL EDUCATION BUILDING
MECHANICAL, PLUMBING AND FIRE PROTECTION
The building is severed by central station air handlers located in penthouse mechanical rooms. The units are in fair condition and are reaching the end of their useful lives. The existing mechanical rooms are undersized and the ductwork is in poor condition. During the initial installation of the mechanical system, the duct installation had to be compromised due to the limited space.

Consideration should be given to replacing the mechanical system in the near future. However, due to the limited space, it will be difficult to replace the units without major rework of the penthouses.

Domestic water system, plumbing fixtures and the sanitary sewer systems appear to be in good repair.

ELECTRICAL
Lighting
The majority of the lighting in the Tech Building consists of recessed and surface mounted 2x4 fluorescent fixtures with energy efficient T8 lamps and electronic ballasts. These fixtures were upgraded as part of an energy savings program recently implemented by the College. Normal lighting levels appear to meet minimum recommended lighting levels for educational purposes. Emergency lighting is provided by surface mounted battery packs which appear to be located such that lighting levels in the event of a power loss would meet code minimum.

Power Distribution
The electrical service for the Tech Building is a 600A, 480/277V, 3 phase service that appears to be in good working order with spare capacity for expansion.

Branch panels are located throughout the building in electrical closets to feed the lighting and receptacles circuits. There is limited spare capacity in these panels for additional circuits.

Fire Alarm
The main fire alarm system in the Tech Building is an older Simplex system that appears to be in good working order. The fire alarm devices consist of smoke detectors, magnetic door holders, and audible and visual alarm indicating devices, which are located throughout the building at what appears to be below code minimum.

Voice/Data
There appears to be sufficient voice and data outlets in the Tech Building.

Clocks
The master clock system in the Tech Building appears to be inoperable. Battery operated clocks are installed in areas as needed.

Security
There is currently not a security system or surveillance system present in the Tech Building.
Recommendations

1. Upgrade the fire alarm system and fire alarm devices to a fully addressable system that is capable of notifying the local fire department and facility personnel electronically. Integrate this system with the other building fire alarm systems on the Morristown campus, and provide a remote annunciator where it can be easily monitored.

2. Implement a campus wide security system including closed circuit cameras, magnetic door locks and central monitoring system.

3. Install wireless clock system, such as Primex, that can synchronize all clocks on campus from a central point.

NATURAL SCIENCE BUILDING
MECHANICAL, PLUMBING AND FIRE PROTECTION

The building is severed by central station air handlers located in mechanical rooms. The units are in fair condition and are reaching the end of their useful lives. The mechanical rooms are also being used for storage for the science labs.

Consideration should be given to replacing the mechanical system in the near future and providing addition storage space for the labs. The material being stored in the mechanical space could be a code violation.

Domestic water system, plumbing fixtures and the sanitary sewer systems appear to be in good repair.

ELECTRICAL

Lighting

The majority of the lighting in the Natural Sciences Building consists of recessed 2x4 fluorescent fixtures with energy efficient T8 lamps and electronic ballasts. These fixtures were upgraded as part of an energy savings program recently implemented by the College. Normal lighting levels appeared to meet or exceed minimum recommended lighting levels for educational purposes. Emergency lighting is provided by battery ballasts and surface mounted battery packs which appear to be located such that lighting levels in the event of a power loss would meet code minimum.

Power Distribution

The electrical service for the Natural Sciences Building is a 1200A, 480/277V, 3 phase service that appears to be in good working order with spare capacity for expansion.

Branch panels are located throughout the building in electrical closets to feed the lighting and receptacles circuits. There is limited spare capacity in these panels for additional circuits.

Fire Alarm

The main fire alarm system in the Natural Sciences Building is a Simplex system that appears to be in good working order. The fire alarm devices consist of smoke detectors, magnetic door holders, and audible and visual alarm indicating devices, which are located throughout the building at what appears to meet code minimum.
Voice/Data
There appears to be sufficient voice and data outlets in the Natural Sciences Building.

Clocks
The master clock system in the Natural Sciences Building appears to be in working order, although it is not synchronized with the other master clock systems located on campus.

Security
There is currently not a security system or surveillance system present in the Natural Sciences Building.

Recommendations
1. Implement a campus wide security system including closed circuit cameras, magnetic door locks and central monitoring system.
2. Install wireless clock system, such as Primex, that can synchronize all clocks on campus from a central point.

SECURITY BUILDING
MECHANICAL, PLUMBING AND FIRE PROTECTION
The building is served by a split system heat pump. The unit appears to be in good repair with several years of remaining useful life.

Domestic water system, plumbing fixtures and the sanitary sewer systems appear to be in good repair.

ELECTRICAL
Lighting
The lighting in the Police Station consists of recessed 2x4 fluorescent fixtures with energy efficient T8 lamps and electronic ballasts. Normal lighting levels appear to meet minimum recommended lighting levels for office environments. Emergency lighting is provided by battery ballasts in fixtures which are located such that lighting levels in the event of a power loss would meet code minimum.

Power Distribution
The electrical service for Police Station consists of a 120/208V, 200A load center that is fed from a transformer located in the Humanities Building. There is very little capacity for expansion.

Fire Alarm
There is currently not a fire alarm system in the Police Station.

Voice/Data
There appears to be sufficient voice and data outlets in the Police Station.

Clocks
Battery operated clocks are installed in areas as needed.
Security
There is currently not a security system or surveillance system present in the Police Station.

Recommendations
1. Install a dedicated electrical service with generator back up for operation in the event of a power failure.
2. Install a fully addressable fire alarm system that is capable of notifying the local fire department and facility personnel electronically. Integrate this system with the other building fire alarm systems on the Morristown campus, and provide a remote annunciator where it can be easily monitored.
3. Implement a campus wide security system including closed circuit cameras, magnetic door locks and central monitoring system.
4. Install wireless clock system, such as Primex, that can synchronize all clocks on campus from a central point.

PLANT OPERATION BUILDING
MECHANICAL, PLUMBING AND FIRE PROTECTION
The office areas of the building are served by through the wall console units. The units appear to be in good repair and are operating satisfactory. The shop areas are heated and ventilated only. The boiler and hot water unit heaters are in poor repair and have reached the end of their useful life. Consideration should be given to replacing the boiler and unit heaters with new equipment or with natural gas fired unit heaters.

Domestic water system, plumbing fixtures and the sanitary sewer systems appear to be in good repair.

ELECTRICAL

Lighting
The lighting in the office areas of Plant Operations consist of recessed 2x4 fluorescent fixtures with energy efficient T8 lamps and electronic ballasts. These fixtures were upgraded as part of an energy savings program recently implemented by the College. Normal lighting levels appear to meet minimum recommended lighting levels for office environments. Emergency lighting is provided by battery ballasts in fixtures which are located such that lighting levels in the event of a power loss would meet code minimum. The lighting in the garage and shop areas of Plant Operations consists of outdated T12 fluorescent fixtures with magnetic ballasts. Emergency lighting in the shop area is provided by surface mounted battery packs which appear to be located such that lighting levels in the event of a power loss would be below code minimum.

Power Distribution
The electrical service for Plant Operations is a 225A, 480/277V, 3 phase service that is in need of replacement and has no spare capacity for expansion.

Fire Alarm
There is currently not a fire alarm system in the Plant Operations Building.

Voice/Data
There appears to be sufficient voice and data outlets in the Plant Operations Building.
Clocks
Battery operated clocks are installed in areas as needed.

Security
There is currently not a security system or surveillance system present in the Plant Operations Building.

Recommendations
1. Install a fully addressable fire alarm system that is capable of notifying the local fire department and facility personnel electronically. Integrate this system with the other building fire alarm systems on the Morristown campus, and provide a remote annunciator where it can be easily monitored.
2. Implement a campus wide security system including closed circuit cameras, magnetic door locks and central monitoring system.
3. Install wireless clock system such as a Primex system that can synchronize all clocks on campus from a central point.
4. Replace existing service with new, up to date equipment, sized for additional spare capacity as needed.

GREAT SMOKY MOUNTAIN EXPO CENTER
MECHANICAL, PLUMBING AND FIRE PROTECTION
The Expo Center is an agricultural exhibition center with an arena area, concession areas, administrative spaces and horse barns. The office areas and concession areas are heated and cooled using spilt systems. The units appear to be in good repair and have several years of remaining useful life. The arena area is heated and vented, fans and heaters appear to be in good repair. The horse barns are vented only, the fans appear to be in good repair.

The grease hood in the concession area appears to be in good repair and meets current codes. The hood appears to have been cleaned on regular bases. Consideration should be given to installing a maintenance platform around the hood exhaust fan. Having a platform would prevent damage to roof during cleaning of the grease duct.

During the site visit, a show was in progress, and a fire hydrant was being used to supply domestic water to several campers. The hydrant did not have a meter or backflow protection. Consideration should be given to providing dedicated camper hook-ups.

Domestic water system, plumbing fixtures and the sanitary sewer systems appear to be in good repair.

ELECTRICAL
Lighting
The majority of the lighting in the Agricultural Pavilion consists of high bay metal halide type lighting fixtures that appear to be in good working order. The office areas are lit with recessed 2x4 fluorescent fixtures. Normal lighting levels appear to meet the minimum recommended lighting levels for the intended areas. Emergency lighting, where present, is provided by surface mounted battery packs which are located such that lighting levels in the event of a power loss would be below code minimum.
Power Distribution
The main electrical service for the building is an exterior mounted, 1200A, 480/277V, 3 phase service that appears to be in good working order with no spare capacity for expansion.

Branch panels are located throughout the building in electrical closets to feed the lighting and receptacles circuits. There is limited spare capacity in these panels for additional circuits.

Fire Alarm
The main fire alarm system in the Agricultural Pavilion is an older Firelite system that appears to be in decent working order. The fire alarm devices consist of smoke detectors and audible and visual alarm indicating devices, which are located throughout the building at below code minimum requirements. There is presently no voice evacuation system in place as required by code in assembly occupancies of more than 300 persons.

Voice/Data
There appears to be sufficient voice and data outlets in the Expo Center.

Security
There did not appear to be a security system or surveillance system present at the Expo Center.

Recommendations
1. Replace the entire fire alarm system and fire alarm devices with a fully addressable system that is capable of notifying the local fire department and facility personnel electronically. Provide a remote annunciator where it can be easily monitored.
2. Replace metal halide lighting with high bay fluorescent fixtures with energy efficient electronic ballasts. Provide certain fluorescent high bay fixtures with battery ballasts to increase egress lighting levels.
3. Implement a security system including closed circuit cameras, magnetic door locks and central monitoring system.
4. Provide additional electrical service for camper and RV electrical hook ups. Existing distribution cannot support the current electrical demand for campers and RVs.

GREENEVILLE CAMPUS
MECHANICAL, PLUMBING AND FIRE PROTECTION
The Greeneville Campus is housed in an old hospital facility. The hospital was originally constructed in the 1920s with additions in the 1940's, 1960's and 1980's. The mechanical systems in the 1920's and 1940's additions are in poor condition, nonfunctional and beyond repair. Consideration should be given to demolition of these areas.

The mechanical systems in remaining additions are in poor repair and are in need of replacement. The original use of the additions was for patient rooms. The rooms were served by fan units with central station fresh air units. The fan coils, air handlers and piping are in poor repair. The mechanical system should be replaced in its entirety.

Currently the building is used for dorm space and classrooms. A fan coils system is suitable for dorm space, but
is not for a large open class room. Consideration should be given to converting the additions from fan coils to a variable air volume system. Air handlers could easily be installed on the floors and ducted to the classroom and dorm room. A VAV system would provide excellent indoor air quality and reduce operating costs by using air side economizers. With a fan coil system chillers must be operated anytime cooling is required in the building. With a VAV system when the outdoor air temperature is below 55F outdoor air can be used to cool the building.

Chilled water is provided by two air cooled chillers; both chillers are in poor repair and have reached the end of their useful life. The chilled water piping is in fair to poor condition.

Heating water is provided by two packaged boilers. The boilers are in good repair and have been recently repaired. The hot water piping is in fair to poor condition.

The Campus does not have building automation system.

The domestic water system is in poor condition. The domestic water heaters are in poor condition and have reached the end of their useful life.

The fire protection system is outdated and would not meet current codes. Due to the height of the building a stand pipe system would be required. Current codes require a pressure of 100 psi at the top of the stand pipe. Based on current building pressures this pressure could not be obtained with out using a fire pump. Portions of the building are sprinklered using the domestic water system.

The sanitary sewer system and plumbing fixtures are in poor repair and should be replaced.

The elevator shaft did not appear to be vented as required by current codes.

ELECTRICAL

Lighting
The majority of the lighting in the Greeneville Campus consists of recessed and surface mounted fluorescent fixtures. There is a mixture of fixtures with energy efficient T8 lamps and fixtures with outdated T12 lamps located throughout the building. Normal lighting levels appear to be below, or barely meet the minimum recommended lighting levels for educational purposes. Emergency lighting, where present, is provided by surface mounted battery packs which are located such that lighting levels in the event of a power loss would be below code minimum.

Power Distribution
The main electrical service for the building is a 3000A, 480/277V, 3 phase service that appears to be in good working order with plenty of spare capacity for expansion. There are several older levels of distribution, however, that is backfed from the newer switchgear that is in poor condition and in need of removal and/or replacement.

A 125KW generator is located in the main electrical room, which does not appear to be in operating order. Proper working clearances and separations are not present.
Branch panels are located throughout the building in electrical closets to feed the lighting and receptacles circuits. There is limited spare capacity in these panels for additional circuits.

Fire Alarm
The main fire alarm system at the Greenville campus is antiquated and in desperate need of replacement. The fire alarm devices consist of smoke detectors, magnetic door holders, and audible and visual alarm indicating devices, which are located throughout the building at below code minimum requirements. The mounting heights of the fire alarm initiating and indicating devices also do not meet current ADA requirements.

Voice/Data
There appears to be sufficient voice and data outlets in the Greeneville Campus. Communication closets are present on each floor, and the cabling infrastructure appears to be up to date.

Clocks
The master clock system at the Greeneville Campus is inoperable. Battery operated clocks are installed in areas as needed.

Security
There is currently not a security system or surveillance system present at the Greenville Campus.

Recommendations
1. The electrical systems in the 1920’s and 1940’s additions are in poor condition, nonfunctional and beyond repair. Consideration should be given to demolish these areas.
2. Replace the entire fire alarm system and fire alarm devices with a fully addressable system that is capable of notifying the local fire department and facility personnel electronically. Provide a remote annunciator where it can be easily monitored.
3. Remove and/or replace outdated switchgear. Leave only in place distribution which meets current codes.
4. Replace T12 lighting fixtures with T8 fluorescent fixtures with energy efficient electronic ballasts.
5. Implement a campus wide security system including closed circuit cameras, magnetic door locks and central monitoring system.
6. Install wireless clock system, such as Primex, that can synchronize all clocks on campus from a central point.
CAMPUS SAFETY AND PROTECTION

MASTER PLAN ASSESSMENT

WALTERS STATE CAMPUS POLICE

Prepared By: Sarah Rose

Director of Campus Police and Emergency Preparedness

Walters State Campus Police Department

January 2008

Campus Safety and Protection

Master Plan Assessment

Walters State Campus Police
INTRODUCTION
The campus safety and protection master plan assessment is being provided to the department of facilities management for inclusion in the ten year master planning process for the Walters State campuses. The protection master plan assessment will focus on existing safety and protection conditions, as well as future safety and protection needs of all WSCC campuses.

CAMPUS EXPANSION
Walters State Community College was established in 1970. Since its establishment, the campus has expanded its programs and facilities and serves a diverse population of students covering a ten county region. Currently Walters State has campuses located in Morristown, Sevierville, and Greeneville, Tennessee. In addition, the college has extensions in Tazewell and Gray, Tennessee, as well as The Great Smoky Mountain Exposition Center is located in White Pine, Tennessee and the Five Rivers Career Center in Talbott, Tennessee.

The Morristown campus was established in 1970, and currently consists of seven academic buildings, two recreational facilities, and two support services buildings for a total of 11 buildings. The Sevierville campus was established in 1999, and currently consists of three academic buildings. The Greeneville campus was established in 1995, and currently consists of one building. The Tazewell extension was established in 1995, and consists of a rental facility located in a shopping center. The Gray extension was established in 2000, and is also a rental facility. The Smoky Mountain Exposition Center was established in 1996 and consists of an arena and several livestock barns. The Five Rivers Career Center is a rental facility located in a shopping center.

Future campus expansion projects are anticipated. Continued expansion and remodeling of facilities are implemented to meet the growing needs of the communities served. It is anticipated that with the continued growth of the campuses and extension sites, campus police services and staff will expand as well.

CAMPUS POLICE FACILITIES
The central office of the campus police department is located on the Morristown campus. Offices are also located at the Sevierville and Greeneville campuses.

LAW ENFORCEMENT STAFFING
The Campus Police Department currently consists of eight full time officers, one regular part time officer, 17 temporary part time officers, seven reserve officers and one civilian staff.

All full time officers are certified as law enforcement officers through the Peace Officer Standards and Training commission as police officers, all temporary part time officers are certified as well, through the law enforcement agency they are primarily employed with. Our regular and temporary part time offices typically have primary employment with a sister law enforcement agency and are certified police officers. Because Walters State is home to the East Tennessee Regional Public Safety Center and Law Enforcement Training Academy, seven public safety staff members serve as reserve officers for the campus police department. The department employs one civilian responsible for clerical duties for the department.

The director of campus police and emergency preparedness has administrative responsibility for the campus police function on all campuses. The director ensures that campuses are adequately staffed with officers to provide police coverage and that emergency preparedness planning is addressed. The director’s office is located on
the main campus in Morristown. The Morristown campus receives 24-hour police coverage, 365 days per year. In addition to the director on the Morristown campus, the campus police department is staffed with a captain who serves as day shift officer. The captain/day shift officer provides police coverage, leads investigations and responds to calls for service. The evening shift is staffed with a sergeant who is responsible for supervisory and patrol duties and one patrol officer. Police coverage for night shift on the Morristown campus is covered by one patrol officer. Police coverage for the Sevierville campus consists of a supervising patrol officer assigned to day shift and an additional full time patrol officer assigned to the evening shift. Police coverage for the Greeneville campus consists of one full time supervising patrol officer and one regular part time day shift officer. Officers are not provided for the extension sites and are provided local police coverage within the jurisdiction they are located in. Campus officers are dispatched to the extension sites on as needed bases. Temporary part time officers are utilized, on an as needed basis on all campuses, to cover absences and special events.

All Walters State campus police officers are fully certified law enforcement officers who are responsible for enforcing state and local laws, as well as campus rules and regulations. Officers have full investigative powers on all Walters State properties. Officers maintain certification by attending required police training throughout the year.

With the continued growth of the campuses, rising crime rates within communities, the need for continuous emergency preparedness, it is anticipated that within the next ten years the campus police department staffing levels will need to increase with additional full time officers being employed, as well as part time officers.

CAMPUS ACCESS AND CONTROL

Campus access control has been based on the lock and key system since establishment of each campus or extension. The key management system is the responsibility of the campus police department. Keys are maintained in a locked storage area in the campus police building. Requests for keys must be approved by appropriate administrative staff before issue can take place. The campus police department is also responsible for duplication of keys. Once approved for duplication or issue, the keys must be picked up and signed for by the requesting individual. At that time a key record report is established for a new employee or the keys are added to an existing employee record. Keys are returned to the campus police department upon separation from the institution. The college is vulnerable to lost keys, as well as unauthorized duplication of keys. In addition, a manual system is vulnerable to oversights and there is no guarantee that everyone employed appropriately follows the policy for duplication and return of keys. Currently if keys are lost which allow access to highly sensitive areas the lock or locks must be changed.

Advances in technology for access control, such as key card systems and/or proximity cards have been considered, but have not been pursued. The expense to convert all existing buildings to such a system would be extensive. In addition, implementation would require management of two separate access systems unless the entire campus was converted. However, technology based systems provide increased security and protection in that cards that are lost, or if a need to deny access exists, a card can be deactivated and does not need to be returned.

With the expansion of the college, storage space for the keys is becoming more and more limited. It is anticipated that with continued expansion of the campus, the central campus police facilities located on the Morristown Campus will need to expand to accommodate the need for storage and management of the key system.
ALARMS AND MONITORING
Buildings on the Morristown and Greeneville campus are not currently equipped with burglar alarms. The Sevierville campus, Exposition Center, Career Center and the Tazewell extension sites are equipped with burglar alarms. The alarms are monitored by the alarm company who notify local law enforcement and appropriate campus personnel if the systems are activated. All buildings are equipped with fire alarms which notify local emergency services and appropriate campus personnel.

EMERGENCY PREPAREDNESS
Walters State has an existing emergency preparedness plan which includes all hazards, business continuity and recovery for all campuses and extension sites. Each building is assigned building, floor and area coordinators who are responsible for coordinating and executing the plan for a specified building. Drills are conducted to ensure familiarity with evacuation and relocation procedures. Building evacuation plans are posted in prominent areas in all buildings.

The campus police department meets and communicates with local police agencies in the local jurisdictions to ensure that appropriate assistance will be made available if the need should arise. In addition, campus police works closely with local emergency management agents to ensure adequate response to emergencies which may extend outside the college’s capability to deal with.

A communications upgrade for the Morristown campus police department recently took place which enabled communications with campus police, the campus emergency response team, maintenance, and local emergency response agencies.

THE FUTURE OF CAMPUS SAFETY AND PROTECTION AT WS CCC
Walters State takes a pro-active approach to campus safety. In the wake of recent tragic events on college campuses many improvements and upgrades are being contemplated and implemented. The college is currently in the process of converting to a voice over IP phone system with voice alert capabilities which will greater enhance the ability to reach all areas of the campus with emergency instructions.

In addition, a security consultant from a sister agency, has conducted security assessments and is currently producing security reports for all campuses. It is proposed that surveillance cameras be installed in strategic areas on all campuses. The consultant is providing recommendations for the proper location of cameras in regards to this proposal. Vendors and options are presently being pursued. In addition, a siren warning alert system for all campuses is under consideration and being researched by facilities management.

Emergency planning is an ongoing process and is constantly in an improvement cycle. Staffing levels are reviewed periodically. Proposals to increase staffing levels are made to, and considered by, administrative staff. Staffing will expand as the need arises with growth of the campuses.
MORRISTOWN CAMPUS

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Unit/$</th>
<th>Total</th>
<th>Funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseball Field</td>
<td></td>
<td></td>
<td>$1,858,750</td>
<td>Private</td>
</tr>
<tr>
<td>Multipurpose Bldg.</td>
<td>50,000 sq. ft.</td>
<td>$200 sq. ft.</td>
<td>$10,000,000</td>
<td>Private</td>
</tr>
<tr>
<td>Natural Science Bldg. Addition</td>
<td>30,000 sq. ft.</td>
<td>$200 sq. ft.</td>
<td>$6,000,000</td>
<td>TBR</td>
</tr>
<tr>
<td>Expo Ctr. Academic Addition</td>
<td>600 sq. ft.</td>
<td>$200 sq. ft.</td>
<td>$120,000</td>
<td>TBR</td>
</tr>
<tr>
<td>Perimeter Road Widening</td>
<td></td>
<td></td>
<td>$676,000</td>
<td>TBR</td>
</tr>
</tbody>
</table>

SEVIERVILLE CAMPUS

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Unit/$</th>
<th>Total</th>
<th>Funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Purpose Bldg.</td>
<td>13,500 sq. ft.</td>
<td>$275 sq. ft.</td>
<td>$3,712,500</td>
<td>Private/City</td>
</tr>
<tr>
<td>Maintenance Bldg.</td>
<td>10,500 sq. ft.</td>
<td>$100 sq. ft.</td>
<td>$1,050,000</td>
<td>TBR</td>
</tr>
</tbody>
</table>

GREENEVILLE CAMPUS

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Unit/$</th>
<th>Total</th>
<th>Funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laughlin Square Renovation</td>
<td>28,000 sq. ft.</td>
<td>$130 sq. ft.</td>
<td>$3,640,000</td>
<td>Private</td>
</tr>
</tbody>
</table>

(Estimates are in 2008 dollars without cost escalation)
METAL PANEL W/ COLLEGE SIGNAGE
LIGHT FIXTURE
PRECAST
BRICK
METAL PANEL W/ DIRECTIONAL SIGNAGE

1 ELEVATION
3/16" = 1' 0"

CAMPUS SIGN
FLOWER BED
NEW TREES

2 SITE PLAN
1" = 50' 0"